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H I G H L I G H T S

� We apply Lagrangian CFD in reactors to allow dynamic study of the catalyst phase.
� The required number of tracked particles is predicted from physical parameters.
� Reaction models have been coupled to massless particle tracking in ANSYS FLUENT.
� Particle tracking has successfully been combined with the MRF impeller method.
� Guidelines for the practical setup of Lagrangian reactor simulation are presented.
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a b s t r a c t

Large substrate concentration gradients can exist in chemical or biochemical reactions, resulting from a
large circulation time compared to the turnover time of substrates. The influence of such gradients on the
microbial metabolism can significantly compromise optimal bioreactor performance. Lapin et al. (2004)
proposed an Euler–Lagrange CFD method to study the impact of such gradients from the microbial point
of view. The discrete representation of the biomass phase yields an advantageous perspective for
studying the impact of extra-cellular variations on the metabolism, but at significant computational cost.
In particular, the tracked number of particles, as well as the applied time resolution, have a large impact
on both the accuracy of the simulation and the runtime of the simulation. In this work we study the
influence of these parameters on both the simulation results and computation time, and provide
guidelines for accurate Euler–Lagrange bioreactor simulations at minimal computational cost.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In many (bio)chemical reactors, reaction takes place inside a
discrete phase such as micro-organisms or catalysts particles, with
transport occurring in the bulk phase. If the timescale of bulk
mixing is in the range of or longer than the reaction timescale, the
competition between reaction and bulk mixing will result in
spatial substrate heterogeneity. When the discrete phase is mobile,
such as in a slurry reactor or fermentor, micro-organisms/particles
will see continuous changes in their environment as they move

around. The spatial substrate gradients inside the reactor, translate
to temporal substrate variations from the organism or catalyst's
reference frame.

Focusing now on a bioreactor, the biomass specific production
rate qp of the desired component is typically governed by a com-
plex metabolic reaction network, with the reaction rates de-
pending both on the availability of extra-cellular substrates (such
as sugar and oxygen) and intra-cellular components (such as
amino acids and ATP). The adaptation of organisms to their sur-
roundings does not occur instantaneously (Heijnen, 2010), mean-
ing that the intra-cellular and extra-cellular conditions will typi-
cally not be in equilibrium. Consequently, qp may vary in time,
being a function of the organism's trajectory through space. As a
result, the observed production rate of the entire population may
differ considerably from an ideal mixing situation (Larsson et al.,
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1996). Second, there may be considerable heterogeneity within the
population (Delvigne and Goffin, 2014).

Substrate concentration gradients originate from the fact that
the bulk circulation time equals or exceeds the turnover time of
metabolites (Wang et al., 2015). Since the circulation time is de-
pendent on the reactor scale, but turnover times are not, the extra-
cellular conditions in a (typical ideally mixed) laboratory scale
fermentor will not reflect the non-ideal industrial scale operation.
This indicates that microorganisms are tested and selected under
conditions that do not represent their future working environment
(Noorman, 2011). For a reliable process design, effects of substrate
concentration gradients on qp should be taken into consideration
during both process and organism development.

Scale-down simulators offer the possibility to study micro-or-
ganisms under industrially representative conditions by deliber-
ately introducing spatial concentration gradients using multi-
compartment systems, or temporal concentration gradients via a
fluctuating feed. (Neubauer and Junne, 2010; Wang et al., 2015). A
recurring problem in scale-down simulation is to select the
proper setup to reasonably match the industrial environment.
Detailed information about the industrial environment is often
scarce, or unavailable. It has been proposed to use computational
fluid dynamics (CFD) coupled with reaction dynamics (RD) to gain
insight in the industrial environment (Noorman, 2011; Wang et al.,
2014). In this way it is possible to study the magnitude of gradients
and their effect on microorganisms (Lapin et al., 2004, 2006;
Morchain et al., 2013), providing valuable input for the design of
scale-down simulators. Although this communication focuses on
bioreactor applications, the outlined methods are applicable to any
system dealing with similar dynamics.

1.1. CFD-RD coupling

Due to computational constraints, early CFD-RD work related to
bioreactors often remained limited to the application of un-
structured kinetic models (i.e. Larsson et al., 1996), simulating only
the uptake of substrate, or linking growth and production rate
directly to the substrate uptake rate via a Herbert–Pirt equation. As
such models assume an instantaneous adaptation of the metabo-
lism to the extra-cellular conditions, such an approach is un-
suitable to assess the effect of substrate concentration gradients.

More recently, the adaptation of the metabolism to environ-
mental fluctuations has been included via two approaches: the
population balance approach and Euler–Lagrange (EL) approach. In
the population balance approach, micro-organisms are modeled as
a component of the liquid phase. The biomass specific growth rate
μ is typically applied to describe population heterogeneity
(Morchain et al., 2013, 2014; Pigou and Morchain, 2015). This
method is suitable for situations where all relevant processes are
coupled to μ. However, metabolic fluctuations may take place on
shorter timescales than growth rate fluctuations, and may have
complex mutual interactions. To capture such processes, popula-
tion balance approaches are unsuitable, as the biomass population
heterogeneity is not described solely by μ.

In EL-approaches the biomass phase is represented by a large
number of virtual particles carrying an internal parameter vector
describing their state (Lapin et al., 2004, 2006). These virtual
particles are further referred to as parcels to distinguish between
computational and physical biomass particles. A large number of
intra-cellular components and their mutual interactions can be
tracked for each particle via a structured metabolic model. This

Nomenclature

T Tank diameter, m
A Area, m2

Cs Substrate concentration, mol/m3

CX Biomass concentration, kg/m3

Dt Turbulent diffusion coeff., m2/s
Dm Molecular diffusion coeff., m2/s
ΔC Off-bottom clearance, m
D Impeller diameter, m
H Tank height, m
Ks Affinity constant for s, mol/m3

k Turbulent kinetic energy, m2/s2

ks max, Max. reaction rate of s
M Impeller moment, N m
Nc Total no. grid cells
Np Total no. parcels
Np c, No parcels in cell c
Ns Impeller revolutions, 1/s
n Radial divisions
qs biomass specific glucose uptake rate, mol/g/h
qp biomass specific production rate, mol/g/h
Rs c, Vol. reaction of s, mol/m3/s
Rs p, Parcel-coupled reaction of s, mol/m3/s
r Radius, m
Ss c, Source of s in cell c, mol/m3

t Time, s
V Volume, m3

Re Reynolds number
St Stokes number
Sct Turbulent Schmidt no.
Po Power number

Greek

α Proportionality parameter
β Theoretical error
βm c, Max. β in cell c
β⁎

m c, β π( )/ 4 /3m c,
2

χ Mean fluctuations (〈 〉)COVx

ϵ Turbulent energy dissipation, m3/s2

τr c, Reaction time in cell c
τm p, Parcel-mixing time
sx St. dev. of parameter x
ρ Density, kg/m3

μl Molecular viscosity, Pa s
μ Biomass specific growth rate, 1/s
λ Interphase substrate imbalance, %
θ Mean reaction time Δt k X

K
c s max

s

,

Subscripts

t Turbulent
T Total
p Particle
c Gridcell
s Substrate

Other

x Time-average of x
〈 〉x Volume-average of x
COVx Coeff. of variation of x, σ

〈 〉x
x
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