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a b s t r a c t 

The modeling of filtered chemical source terms in large-eddy simulation (LES) of turbulent reacting flows 

remains a challenge. Deconvolution methods are an attractive technique for representing these unclosed 

terms. With this technique, filtered scalars are reconstructed through deconvolution. The chemical source 

terms that are computed directly from the deconvolved scalars are filtered explicitly to represent the 

turbulence-chemistry interaction. However, the approximate deconvolution method (ADM), frequently 

employed for non-reacting flows, exhibits shortcomings for reacting scalars. This is because ADM does 

not ensure essential conservation and boundedness conditions. To address this issue, we propose a reg- 

ularized deconvolution method (RDM) based on an optimization procedure. We conduct a priori and a 

posteriori analyses to examine RDM as a closure in LES. These investigations are performed in the context 

of explicit filtering. By showing that RDM is accurate and stable with respect to both the filter width and 

time, we conclude that the new deconvolution method shows promise in application to combustion LES. 

© 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 

1. Introduction 

Large-eddy simulation (LES) is now recognized as a viable 

method for predicting turbulent reacting flows [1] . In most prob- 

lems involving turbulent reacting flows, the underlying physics is 

characterized by the dynamics of large-scale flow structures and 

their interactions with the flame. In LES, large-scale structures are 

represented explicitly on the computational mesh. By modeling the 

subgrid scale (SGS) residual contributions, this approach improves 

descriptions of scalar mixing and turbulent chemistry interaction. 

The evolution of reactive flows is described by the solution of 

the reactive Navier–Stokes equations. Defining φ( x , t ) as a generic 

reactive scalar, the corresponding transport equation is written as 

∂ 

∂t 
( ρφ) + 

∂ 

∂x i 
( ρu i φ) = 

∂ 

∂x i 

(
ρD φ

∂φ

∂x i 

)
+ ρ ˙ ω φ, (1) 

where t is the time, x i is the spacial coordinate along the i th di- 

rection, ρ is the density, u i is the i th velocity component, D φ is 

the molecular diffusivity of scalar φ and ˙ ω φ is the source term of 

φ due to chemical reaction. Solving Eq. (1) provides information 

about φ at all scales. To achieve this, the minimum resolution re- 

quirement is constrained by the smallest characteristic length scale 

in the flow field. For instance, the length scale can be determined 

by the minimum among the Kolmogorov scale, Bachelor scale and 
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the flame thickness, depending on the flow configuration. In LES, 

the mesh size is characterized by the length scale where the iner- 

tial range is resolved [2] instead of resolving the smallest physical 

length scale. In this approach, reactive scalars need to be filtered 

by a low-pass filter. Denoting G ( x ) as the time-invariant filter ker- 

nel in physical space, satisfying the property 
∫ ∞ 

−∞ 

G ( x ) d x = 1 , the 

explicit filtering of φ( x , t ) is given by the following convolution 

operation: 

φ( x , t ) = 

∫ ∞ 

−∞ 

G ( x − x ′ ) φ( x ′ , t ) d x ′ =: G ∗ φ. (2) 

Hence, the governing equation for a reactive scalar in LES is ob- 

tained by applying the low-pass filter G to Eq. (1) , 

∂ 

∂t 

(
ρ̄˜ φ

)
+ 

∂ 

∂x i 

(
ρ̄˜ u i ̃

 φ
)

= 

∂ 

∂x i 

(
ρD 

∂φ

∂x i 

)
+ σφ + ρ ˜ ˙ ω φ, (3) 

where ˜ φ is the Favre filtered scalar, which is defined as 

˜ φ( x , t ) = 

ρφ

ρ
=: ˜ G ∗ φ. (4) 

Terms on the right-hand-side of Eq. (3) are unclosed; therefore 

modeling of these terms is required to solve the Favre-filtered LES 

equation for φ. In this paper, we propose closure models for these 

unclosed terms using the deconvolution method. This approach ad- 

dresses some of the issues we have in closing these terms, particu- 

larly for the filtered chemical source term. The issues are discussed 

below in this section. 
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The filtered molecular diffusion term appearing as the first term 

on the right-hand-side of Eq. (3) is commonly modeled by retain- 

ing first-order terms and neglecting higher order contributions. In 

general, the closure of this term does not require application of a 

deconvolution method and takes the following form: 

∂ 

∂x i 

(
ρD φ

∂φ

∂x i 

)
= 

∂ 

∂x i 

(
ρ˜ D φ

∂ ̃  φ

∂x i 

)
. (5) 

The second term we need to address is the turbulent scalar 

mixing term, σφ , which is defined as 

σφ = 

∂ 

∂x i 

(
ρ̄˜ u i ̃

 φ
)

− ∂ 

∂x i 
( ρu i φ) . (6) 

A typical closure for this term is to use a gradient model [3] , which 

introduces a turbulent diffusivity. A dynamic procedure for evalu- 

ating this term has been developed [4] . 

Modeling of the filtered chemical source term, appearing as last 

term on the right-hand-side of Eq. (3) , is especially challenging. 

The difficulty arises for two reasons, namely the modeling of 

chemical reactions and the modeling of the turbulence-chemistry 

interaction on unfiltered scales. The chemical reactions are usu- 

ally represented either using detailed or reduced chemistry in 

Arrhenius form, or relying on reaction-transport manifolds. Ex- 

amples of combustion models that utilize Arrhenius laws are 

the artificially thickened flame model [5] and the linear-eddy 

model [6] . Some examples for manifold-based models are intrinsic 

low dimensional manifold (ILDM) [7] , flame prolongation in ILDM 

[8] , flamelet generated manifold [9] , and flamelet progress vari- 

able [10] . An adaptive modeling approach that integrates different 

combustion submodels was developed by introducing a Pareto 

efficiency [11,12] . In these models, the thermochemical state is 

represented in terms of a reduced set of scalars. While these 

methods are effective in reducing the computational complexity 

of the simulation, they rely on intrinsic assumptions about the 

underlying flame-structure representation and closure models for 

the turbulence-chemistry interaction. 

To consider effects of turbulence on the combustion process, 

a closure model is required. For Arrhenius chemistry, models 

are developed based on large-scale structures. An example for 

this type of model is the laminar chemistry method [13] which 

uses the resolved scalars to compute the reaction source term. 

Other examples are the partially stirred reactor (PaSR) model 

[14,15] and the scale-similarity closure [16] , which extends the 

laminar chemistry method by modeling the effects of fine-scale 

structures. In contrast, reaction-transport manifold models typi- 

cally consider the asymptotic regimes of premixed and diffusion 

flames. Topology-dependent closures were developed for these 

models, such as the filtered tabulated chemistry model for LES 

[17] and presumed probability density function (PDF) models [18] . 

Although these models have been shown to provide reliable 

predictions of canonical and complex flame configurations, the de- 

pendence on an underlying flame topology limits their application 

to combustion problems involving a single-flame regime. There- 

fore, for multi-regime and mixed-mode combustion, submodel 

adaptation [11,12] or the use of topology-free combustion models 

is required. 

To address this need, turbulent closures using deconvolution 

methods are considered. Deconvolution methods that are devel- 

oped from mathematical arguments provide approximate inverse 

to the filter operation in LES. Consequently, SGS terms in the LES 

equations can be computed explicitly using the deconvolved vari- 

ables. Since no assumptions on the reconstructed flow field are 

made in deriving the deconvolution operator, this approach has the 

potential to be independent of an underlying flame topology and 

therefore applicable as subgrid model for both finite rate chemistry 

and reduced manifold models. 

The deconvolution method was first introduced as a closure for 

the SGS stress terms in LES of non-reactive flows [19] , and the 

method was applied to different flow configurations [20–22] . The 

application of the deconvolution method to reactive LES was later 

formulated using a moment-based reconstruction of the scalar 

field [23–25] . An approximate deconvolution operator derived from 

a Taylor-series expansion to the Gaussian filter was developed [26] . 

In conjunction with a flamelet model, this model was applied to a 

turbulent Bunsen flame. 

However, by recognizing that deconvolution operators devel- 

oped for LES are linear operators, they lack essential boundedness 

and conservation properties of scalar quantities, which are critical 

for turbulent reacting flows. By addressing this issue, the objective 

of this work is to propose a general closure for unclosed terms in 

Eq. (3) by developing a regularized deconvolution method (RDM). 

To this end, constraints are directly introduced in RDM to fulfill 

essential regularization conditions. 

The remainder of this paper has the following structure. The 

governing equations are introduced in Section 2 . Section 3 is con- 

cerned with reviewing mathematical formulations of classical de- 

convolution techniques and developing the regularized deconvolu- 

tion method. We examine the deconvolution methods by consider- 

ing DNS of a partially-premixed flame in canonically decaying tur- 

bulence. The computational configuration is described in Section 4 . 

We first conduct an a priori study to quantify the accuracy of the 

deconvolution methods in terms of scalar reconstruction and the 

estimation of unclosed terms in Section 5 . Then in Section 6 we 

analyze the performance of RDM in an a posteriori study. The pa- 

per concludes with an overall evaluation of RDM and its applica- 

tions in LES in Section 7 . 

2. Governing equations of LES 

In combustion LES, the generic scalar transport equation, shown 

in Eq. (3) , has to be adapted for the temperature and species mass 

fractions Y k , k = 1 , . . . , N s , with N s denoting the number of species. 

The full set of filtered equations for reactive flows in the low-Mach 

number limit takes the following form: 

∂ 

∂t 
ρ̄ + 

∂ 

∂x i 
( ρ˜ u i ) = 0 , (7a) 

∂ 

∂t 

(
ρ̄˜ u j 

)
+ 

∂ 

∂x i 

(
ρ˜ u i ̃  u j 

)
= − ∂ p 

∂x j 
+ 

∂ τi j 

∂x i 
+ σu j , (7b) 

∂ 

∂t 

(
ρ̄˜ Y k 

)
+ 

∂ 

∂x i 

(
ρ̄˜ u i ̃

 Y k 
)

= 

∂ 

∂x i 

(
ρD k 

∂Y k 
∂x i 

)
+ σY k + ρ ˙ ω Y k , (7c) 

∂ 

∂t 

(
ρ̄˜ T 

)
+ 

∂ 

∂x i 

(
ρ̄˜ u i ̃

 T 
)

= 

1 

C p 

∂ 

∂x i 

(
λ

∂T 

∂x i 

)
+ σT + 

(
ρ ˙ ω 

′ 
T 

C p 

)

+ 

( 

ρ
N s ∑ 

k =1 

C p,k 

C p 
D k 

∂Y k 
∂x i 

) 

∂T 

∂x i 
+ 

1 

C p 

∂ p 0 
∂t 

, (7d) 

where p is the hydrodynamic pressure, C p = 

∑ N s 
k =1 

C p,k Y k is the 

heat capacity of the gas mixture, and τi j = μ(∂ u i /∂ x j + ∂ u j /∂ x i −
2 / 3 δi j ∂ u k /∂ x k ) is the viscous stress tensor. Note that Eq. (7 d) is 

written for low Mach number flow conditions, in which viscous- 

dissipative effects are ignored, and the thermodynamic pressure p 0 
is only a function of time [27] , which is evaluated from the state 

equation. 

In this set of equations, Eqs. (7) , the divergence of the Reynolds 

stress tensor σu j and the turbulent mixing terms σφ for φ ∈ { Y , T } 
are defined as 
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