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a b s t r a c t 

We assess the impact of individual experimental observations on a multivariate population balance model 

for the formation of silicon nanoparticles from the thermal decomposition of silane by means of basic re- 

gression influence diagnostics. The nanoparticle model is closely related to one which has been used to 

simulate soot formation in flames and includes morphological and compositional details which allow rep- 

resentation of primary particles within aggregates, and of coagulation, surface growth, and sintering pro- 

cesses. Predicted particle size distributions are optimised against 19 experiments across ranges of initial 

temperature, pressure, residence time, and initial silane mass fraction. The influence of each experimental 

observation on the model parameter estimates is then quantified using the Cook distance and DFBETA 

measures. Seven model parameters are included in the analysis, with five Arrhenius pre-exponential fac- 

tors in the gas-phase kinetic rate expressions, and two kinetic rate constants in the population balance 

model. The analysis highlights certain experimental conditions and kinetic parameters which warrant 

closer inspection due to large influence, thus providing clues as to which aspects of the model require 

improvement. We find the insights provided can be useful for future model development and planning 

of experiments. 

© 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 

1. Introduction 

Gas-phase synthesis in hot-wall reactors is a common way in 

which silicon nanoparticles are manufactured. Shock-tubes are an- 

other set-up in which especially the early phase of formation of 

these particles can be studied. Typically, these synthesis processes 

begin with silane (SiH 4 ) as a precursor, which is transformed into 

the eventual nanoparticle product at high temperatures. A variety 

of models have been proposed to describe this transformation [1] . 

These models usually contain unknown or low-confidence (kinetic) 

parameters with large uncertainties associated to them. Systematic 

parameter estimation techniques can then be employed to arrive at 

better values for these quantities, based on available experimental 

data. One of the most elementary parameter estimation methods 

is least-squares optimisation, i.e. minimising the distance between 

experimental observations and model prediction as measured by 

a sum-of-squares objective function. The result of such an optimi- 

sation is a set of values, called (‘best’) estimates, for the selected 

model parameters. Not all experimental data points may equally 
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inform the optimal value of the parameters, though – different pa- 

rameters may be determined to a varying extent by different ob- 

servations. In order to assess which experiments are the most rel- 

evant in the optimisation, one can conduct what may be called an 

omission-based regression influence analysis [2] . Firstly, optimise 

the model against the full data set, and then repeat the optimi- 

sation with one of the data points removed, for each of the data 

points. Based on the difference between the parameter estimates 

of the full optimisation and the optimisations with an omitted 

data point, it is then possible to quantify the influence of individ- 

ual observations on the model overall or on individual parameters. 

Several such measures have been proposed [3,4] , the most widely- 

used one being Cook’s distance [5] , and applied to detect influen- 

tial data points, high-leverage points, and statistical outliers [6,7] . 

An alternative approach to quantifying influence of experimen- 

tal observations is uncertainty propagation [8] , part of which is 

concerned with how experimental measurement errors propagate 

into model parameters and responses. Some of these methods al- 

low calculating the relative contribution of each data point (and 

its error bar) to the uncertainty in each of the parameters. In par- 

ticular, the Data Collaboration framework [9] exploits the pairwise 

consistency of data set units to identify outliers. 

Yet another approach, called perturbation of the optimum, 

has been developed for constrained optimisation [10, p. 34] and 
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Table 1 

The gas-phase kinetic mechanism. Values in bold correspond to parameters chosen for the influ- 

ence analysis. Units for the Arrhenius pre-exponential factors are cm, mol, and s. 

Idx. Reaction A β [ − ] E [kcal/mol] Ref. 

1 SiH 4 (+M) �SiH 2 + H 2 (+M) 3.12 × 10 9 1.7 54.71 [14] 

Low pressure limit: 3.96 × 10 12 0 45.10 [1,15] a 

2 Si 2 H 6 (+M) �SiH 4 + SiH 2 (+M) 1.81 × 10 10 1.7 50.20 [14] 

Low pressure limit: 5.09 × 10 53 −10 . 37 56.03 [14] 

3 Si 2 H 6 (+M) �Si 2 H 4 B + H 2 (+M) 9.09 × 10 9 1.8 54.20 [14] 

Low pressure limit: 7.79 × 10 40 −7 . 77 59.02 [1,14] b 

4 Si 3 H 8 (+M) �SiH 2 + Si 2 H 6 (+M) 6.97 × 10 12 1.0 52.68 [14] 

Low pressure limit: 1.73 × 10 69 −15 . 07 60.49 [14] 

5 Si 3 H 8 (+M) �Si 2 H 4 B + SiH 4 (+M) 3.73 × 10 12 1.0 50.85 [14] 

Low pressure limit: 4.36 × 10 76 −17 . 26 59.30 [14] 

6 Si 2 H 4 B (+M) �Si 2 H 4 A (+M) 2.54 × 10 13 −0 . 2 5.38 [14] 

Low pressure limit: 1.10 × 10 33 −5 . 76 9.15 [14] 

7 Si 2 H 4 B + H 2 �SiH 4 + SiH 2 9.41 × 10 13 0 4.09 [14] 

Reverse coefficients: 9.43 × 10 10 1.1 5.79 [14] 

8 Si 2 H 4 B + SiH 4 �Si 2 H 6 + SiH 2 1.73 × 10 14 0.4 8.90 [14] 

Reverse coefficients: 2.65 × 10 15 0.1 8.47 [14] 

a A is from [1] , β and E are from [15] . 
b A is from [1] , β and E are from [14] . 

unconstrained least-squares optimisation [11] , which has found ap- 

plication in chemical kinetics [2,12,13] . These methods allow cal- 

culating sensitivities of parameter estimates with respect to any 

other quantity in the objective function (or constraints), including 

in particular experimental data. 

The purpose of this paper is to conduct an omission-based out- 

lier analysis of a selection of experimental data for silicon nanopar- 

ticles produced from a silane precursor in hot-wall flow reactors 

and shock tubes which are modelled using a detailed population 

balance model. A main aim is to identify those experimental con- 

ditions which are the most challenging for the model. We apply 

a technique established in the field of regression influence diag- 

nostics to quantify the influence of individual experimental obser- 

vations on kinetic parameter estimates for this purpose. We de- 

termine the influence of the measurements on estimates of some 

Arrhenius pre-exponential factors in the gas-phase kinetic mech- 

anism as well as the population balance model for the particle 

phase. Using a threshold for the influence values, specific measure- 

ments are then highlighted for further analysis, providing further 

insight into the model and potential improvements, as well as sug- 

gestions for future experiments. 

2. Background 

We firstly describe the model, provide some background on 

omission-based regression influence diagnostics, and how it can be 

used to identify outliers. 

2.1. Population balance model for silicon nanoparticle formation 

We briefly summarise the main features of the model here. Full 

details can be found in [1] , and further in [16–20] , noting that a 

closely related model has been applied to soot formation in flames 

(see for example [21] and references therein). It consists of two 

main parts, a gas-phase model, and a particulate phase model. 

2.1.1. Gas phase 

The gas-phase chemical kinetic reaction mechanism used is a 

modified version of the one proposed by [14] , and is summarised 

in Table 1 . Two isomers of Si 2 H 4 are included: silene, i.e. H 2 SiSiH 2 , 

denoted by the suffix “A”, and silylene, i.e. HSiSiH 3 , denoted by the 

suffix “B”. The first six reactions are third-body reactions whose 

pressure-dependence is given in Lindemann fall-off form. More de- 

tails can be found in [1] . 

2.1.2. Particulate phase 

The particle phase is described by a detailed, high-dimensional 

population balance model [1] covering aggregate morphology and 

chemical composition. In this model, each nanoparticle is repre- 

sented as a list of primary particles, together with a (triangular) 

matrix, called connectivity matrix, each entry of which represents 

the common surface area for the corresponding pair of primary 

particles. For each primary particle, the number of silicon and the 

number of hydrogen atoms are stored. From this particle repre- 

sentation, beyond elementary properties like mass and chemical 

composition, several quantities of interest can be derived. These in- 

clude for example, with some additional assumptions, collision and 

mobility diameter of aggregates, surface area, and sintering level. 

The following processes which create or transform particles, or 

account for interaction of the particles with the gas phase, are rep- 

resented in the model: 

Inception : Any two molecules of any of the three species SiH 2 , 

Si 2 H 4 A, and Si 2 H 4 B can collide to (irreversibly) form a new par- 

ticle, which is assumed to consist of a single, spherical primary 

whose diameter follows directly from its mass, i.e. numbers of 

atoms. The rate at which this happens is assumed to be non- 

zero only if the diameter of the resulting particle exceeds a 

temperature- and pressure-dependent critical nucleus diameter. If 

the latter is the case, the inception rate is proportional to the 

product of the concentrations of the collision partners and the 

transition regime coagulation kernel. More details can be found 

in [1] and [16] . 

Condensation : An existing particle can grow through (barrier- 

free) deposition of SiH 2 , Si 2 H 4 A, or Si 2 H 4 B molecules from the gas 

phase onto its surface. It is assumed that the collision efficiency, 

i.e. the probability of sticking, is unity. The rate is given by a free- 

molecular collision kernel. 

Surface reaction : Apart from simply condensing, gas-phase 

species can also react heterogeneously on the particle surface. 

Specifically, silanes (SiH 4 , Si 2 H 6 , and Si 3 H 8 ) can be integrated into 

the particle, with each step releasing one, two, and three molecules 

of hydrogen, respectively. The rate is proportional to the particle 

surface area and an Arrhenius expression with non-zero activation 

energy. Rounding of adjacent primary particles caused by this pro- 

cess is also taken into account. 

Hydrogen release : In order to attain a stable crystal structure, 

particles need to release some of the hydrogen acquired through 

each of the above processes. The rate of desorption is proportional 

to an Arrhenius expression and the coverage of hydrogen on the 
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