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a b s t r a c t

Rehabilitation of contaminated soils in urban areas is in high demand because of the appreciation of land
value associated with the increased urbanization. Moreover, there are financial incentives to minimize
soil characterization uncertainties. Minimizing uncertainty is achieved by providing models that are bet-
ter representation of the true site characteristics. In this paper, we propose two new probabilistic formu-
lations compatible with Gaussian Process Regression (GPR) and enabling (1) to model the experimental
conditions where contaminant concentration is quantified from aggregated soil samples and (2) to model
the effect of physical site discontinuities. The performance of approaches proposed in this paper are com-
pared using a Leave One Out Cross-Validation procedure (LOO-CV). Results indicate that the two new
probabilistic formulations proposed outperform the standard Gaussian Process Regression.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Rehabilitation of contaminated soils in urban areas is in high
demand because of the appreciation of land value associated with
the increased urbanization. A common technique to rehabilitate a
contaminated site is to remove contaminated soil and either treat
or burry it in designated sites. Because there are important costs
associated with this activity, it is essential to characterize spatial
contaminant concentration in order to classify soil as either con-
taminated or non-contaminated based on the applicable legislation.
Any cubic meter unnecessarily removed (i.e. falseþ) or any cubic
meter wrongly left in place (i.e. false�) will increase the overall
rehabilitation costs. Thus, there are financial incentives to mini-
mize soil characterization uncertainties.

In the field of geostatistics, several researchers such as Bou-
dreault et al. [1] and Goovaerts [2,3] have employed the Kriging
theory to characterize the spatial distribution of contaminant con-
centration. Historically, Kriging was proposed by Krige and later
formalized by Matheron [4]. More recently, the research commu-
nity has turned toward Machine Learning methods [5]. Most
researchers in this field have employed Artificial Neural Networks
(ANN) [6–9]. ANN is a powerful tool, however it requires lots of
data (up to millions of data points) to perform well [10]. This con-
dition is seldom met in practice. In the field of Machine learning,
other techniques analogous to Kriging have recently been the

object of numerous publications under the name of Gaussian Pro-
cess Regression, (GPR) [11]. Authors such as MacKay [12] and Ras-
mussen & Williams [13] have presented modern techniques to
calibrate parameters efficiently, process small and large datasets,
and provide enhanced formulations that increase the robustness
toward numerical instabilities. These latest developments are
implemented in several open-source packages such as GPML
(Gaussian Process Machine Learning) [14] and GPStuff [15], both
running on the Matlab/Octave language. The motivation for this
paper is that current ANN and GPR formulations cannot handle
two particular situations that are common during site characteri-
zation: (1) experimental conditions where contaminant concentra-
tion is quantified from aggregated soil samples and (2) the effect of
physical site discontinuities. Note that even if geostatistics meth-
ods can handle aggregated soil samples using Block Kriging [16],
it cannot handle the effect of physical site discontinuities.

This paper proposes a new unified formulation based on the
GPR method to address the two limitations identified above. The
paper is organized as follows: Section 2 introduces the standard
mathematical formulation of Gaussian Process Regression along
with specificities associated with soil characterization applica-
tions. Section 3 presents the two extensions to the standard GPR
formulation that are proposed in this paper. The first extension
account aggregated soil samples by creating virtual points that
are employed to model the average contaminant concentration.
The second extension proposes a new covariance function that
can employ discrete attributes corresponding to physical site dis-
continuities. The justification for these two new probabilistic for-
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mulations comes from a case study where both features are pre-
sent. In Section 4, an empirical analysis compares the performance
of these new extensions with the baseline GPR model.

2. Gaussian process regression for contamination concentration
characterization

This Section summarizes the theory behind Gaussian Process
Regression [11,13]. SubSection 2.1 presents aspects related to the
model definition, SubSection 2.2 presents the formulation for esti-
mating the conditional probability of a Gaussian process given
observations, and SubSection 2.3 presents the procedure for cali-
brating hyper-parameters. All subsections are presented in the
context of soil contamination concentration characterization.

2.1. Model definition

The characterization of contaminants concentration is based on
the following fundamental equation

Yi|{z}
observation

¼ cðlfYgi Þ
zfflfflffl}|fflfflffl{true contaminant ½ �

þ Vi|{z}
measurement error

;Vi � Nð0;r2
V Þ ð1Þ

where Yi is a noise-contaminated observation of the contaminant

concentration cðlfYgi Þ, and where Vi is a zero-mean Gaussian mea-

surement error such that Vi �Vj;8i – j. cðlfYgi Þ describes an unknown,
yet deterministic function corresponding to the concentration of
contaminants across the tridimensional space. For a location

i; lfYgi ¼ ½x; y; z�|i describes spatial coordinates. The model formula-
tion in Eq. (1) is defined for any real number; in practice, it is incon-
sistent with reality, because contaminant concentrations are strictly
positive numbers. Therefore, it is common to transform the obser-
vations in the logarithmic space [17,18],

log Yi|{z}
observation

¼ cðlfYgi Þ
zfflfflffl}|fflfflffl{true contaminant ½ � in log space

þ Vi|{z}
measurement error in log space

;

Vi � Nð0;r2
V Þ ð2Þ

This paper only employs the model formulation in the logarithmic
space as described in Eq. (2). The true contaminant concentration

cðlfYgi Þ, is hidden so only realizations of the random variable Yi

can be observed. The set of observationD ¼ fðlfYgi ; yiÞ; i ¼ 1 : Mg cor-
responds to M pairs of concentration observations and their associ-

ated covariate lfYgi for which the superscript fYg refers to observation
locations.

2.2. Model estimation

Although the true contaminant concentration cðlfYgi Þ is a deter-
ministic function, our knowledge of it is incomplete and it is thus
described by a stochastic process quantifying the probability of

contaminant concentration across space, pðcjlfCgÞ. The probabilistic
estimation of contaminants concentration C conditional on data D
and estimation location lfCg is denoted pðcjlfCg;DÞ. This conditional
probability is modeled using a Gaussian Process

pðcjlfCg;DÞ ¼ NðMCjD;RCjDÞ, where lfCg ¼ ½lfCg1 ; lfCg2 ; . . . ; lfCgN �| is a vec-
tor containing the coordinates for N tridimensional locations
where the concentration needs to be estimated, and where the
superscript fCg refers to estimation locations. The dependence on

the vector of locations lfCg of the posterior mean vector MCjD and
the posterior covariance matrix RCjD are assumed implicitly to sim-

plify the notation. The analytical formulation for computing MCjD
and RCjD is obtained from the Gaussian conditional distribution

MCjD ¼ MC þ R|
YCR

�1
YYðy �MYÞ

RCjD ¼ RCC � R|
YCR

�1
YYRYC|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Posterior knowledge

ð3Þ

In Eqs. (3), the subscript C and Y respectively refers to estimation
and observation locations and matrices on the right-hand side cor-
respond to the prior knowledge

M ¼ MY

MC

� �
; R ¼ RYY RYC

R|
YC RCC

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Prior knowledge

ð4Þ

The prior knowledge for the mean vector is typically defined follow-
ing the hypothesis that the prior mean is zero, i.e. M ¼ 0. If addi-
tional knowledge is available to describe the prior mean, more
complex functions can be employed instead of M ¼ 0. The prior
knowledge for each sub-component of the covariance matrix R is
defined

½RYY�ij ¼ qðlfYgi ; lfYgj Þr2
C þ r2

Vdij; dij ¼ 1 if i ¼ j; else dij ¼ 0

½RCC�kl ¼ qðlfCgk ; lfCgl Þr2
C

½RYC�ik ¼ qðlfYgi ; lfCgk Þr2
C :

ð5Þ

In Eq. (5), subscripts i; j ¼ 1;2; . . . ;M and k; l ¼ 1;2; . . . ;N, where M
is the number of observations and N is the number of estimation
locations. In this definition of the covariance matrices, rC is the
prior standard deviation of the concentration C and this one is con-
sidered to be constant for all locations li. qðli; ljÞ is a correlation func-
tion which describes the correlation between the contaminant
concentration CðliÞ and CðljÞ at two locations li and lj. One possible
choice for the correlation function is the square exponential basis
function defined by

qðli; ljÞ ¼ exp �1
2
ðli � ljÞ|diagð‘2Þ�1ðli � ljÞ

� �
ð6Þ

where ‘ ¼ ½‘x; ‘y; ‘z�| is a vector containing the length scale parame-
ter for each spatial dimension. Each length scale parameter defines
how correlation decays according to an increase in distance with
respect to its corresponding direction. Fig. 1 presents examples of
unidimensional square-exponential covariance functions for differ-
ent length-scale parameters where the correlation qðxi; xjÞ is
expressed as a function of the spatial distance xi � xj. Although
many other correlation functions are available [13], only the square
exponential is employed in this paper.Note that although the for-
mulation in Eq. (3) is analytically accurate, it is known to be compu-
tationally demanding and to suffer from numerical instability
issues. An equivalent formulation that is faster and numerically
more stable is obtained by taking advantage of the Cholesky decom-
position of RYY . This formulation is described in detail by Ras-

Fig. 1. Examples of unidimensional square-exponential covariance functions for
different length-scale parameters.
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