
Full length article

A performance benchmark over semantic rule checking approaches in
construction industry

Pieter Pauwels a,⇑, Tarcisio Mendes de Farias c,e, Chi Zhang b, Ana Roxin c, Jakob Beetz b, Jos De Roo d,
Christophe Nicolle c

aDepartment of Architecture and Urban Planning, Ghent University, J. Plateaustraat 22, B-9000 Ghent, Belgium
bDepartment of the Built Environment, Eindhoven University of Technology, P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands
c Laboratory LE2I, CNRS, Arts et Métiers, Univ. Bourgogne Franche-Comté (UBFC), Dijon, France
dAgfa HealthCare NV, Moutstraat 100, B-9000 Ghent, Belgium
eDepartment of Ecology and Evolution, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland

a r t i c l e i n f o

Article history:
Received 9 February 2016
Received in revised form 24 March 2017
Accepted 3 May 2017
Available online 18 May 2017

Keywords:
ifcOWL
Rule checking
Linked data
Reasoning
Semantic web
Benchmark

a b s t r a c t

As more and more architectural design and construction data is represented using the Resource
Description Framework (RDF) data model, it makes sense to take advantage of the logical basis of RDF
and implement a semantic rule checking process as it is currently not available in the architectural design
and construction industry. The argument for such a semantic rule checking process has been made a
number of times by now. However, there are a number of strategies and approaches that can be followed
regarding the realization of such a rule checking process, even when limiting to the use of semantic web
technologies. In this article, we compare three reference rule checking approaches that have been
reported earlier for semantic rule checking in the domain of architecture, engineering and construction
(AEC). Each of these approaches has its advantages and disadvantages. A criterion that is tremendously
important to allow adoption and uptake of such semantic rule checking approaches, is performance.
Hence, this article provides an overview of our collaborative test results in order to obtain a performance
benchmark for these approaches. In addition to the benchmark, a documentation of the actual rule check-
ing approaches is discussed. Furthermore, we give an indication of the main features and decisions that
impact performance for each of these three approaches, so that system developers in the construction
industry can make an informed choice when deciding for one of the documented rule checking
approaches.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Rule checking in construction industry: application scenarios

Rule checking of building models is one of the key features
required for many applications in the domain of architectural
design and construction. A large share of the rule checking
approaches is located in the realm of building performance check-
ing and regulation compliance checking. Throughout the building
life cycle, designs have to be checked for compliance to a vast num-
ber of different rules and constraints on international, national,

local and even company-specific levels. Rule checking is often pre-
sent in other application scenarios as well, including automatic
query rewriting, building model conversion and subset selection.

With the advent of Building Information Modelling (BIM) tools
[1], fundamentally new processes evolve that allow building infor-
mation to be managed at any point in time. As acknowledged by
Eastman et al. [2], more advanced BIM-based rule checking
approaches are within reach as a result of this trend. Automated
rule checking is defined by Eastman et al. [2] as ‘‘software that does
not modify a building design, but rather assesses a design on the basis
of the configuration of objects, their relations or attributes”. According
to Eastman et al. [2], who refer to the early works by Han et al. [3–
5], rule-based systems are understood as systems that ‘‘apply rules,
constraints or conditions to a proposed design, with results such as
‘pass’, ‘fail’ or ‘warning’, or ‘unknown’.”. So, a rule-based system in
construction industry includes at least two critical elements: the
design model and the rules.

http://dx.doi.org/10.1016/j.aei.2017.05.001
1474-0346/� 2017 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: pipauwel.pauwels@ugent.be (P. Pauwels), tarcisio.mendesde-

farias@unil.ch (T.M. de Farias), c.zhang@tue.nl (C. Zhang), ana-maria.roxin@
u-bourgogne.fr (A. Roxin), j.beetz@bwk.tue.nl (J. Beetz), jos.deroo@agfa.com (J. De
Roo), cnicolle@u-bourgogne.fr (C. Nicolle).

Advanced Engineering Informatics 33 (2017) 68–88

Contents lists available at ScienceDirect

Advanced Engineering Informatics

journal homepage: www.elsevier .com/ locate /ae i

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2017.05.001&domain=pdf
http://dx.doi.org/10.1016/j.aei.2017.05.001
mailto:pipauwel.pauwels@ugent.be
mailto:tarcisio.mendesdefarias@unil.ch
mailto:tarcisio.mendesdefarias@unil.ch
mailto:c.zhang@tue.nl
mailto:ana-maria.roxin@u-bourgogne.fr
mailto:ana-maria.roxin@u-bourgogne.fr
mailto:j.beetz@bwk.tue.nl
mailto:jos.deroo@agfa.com
mailto:cnicolle@u-bourgogne.fr
http://dx.doi.org/10.1016/j.aei.2017.05.001
http://www.sciencedirect.com/science/journal/14740346
http://www.elsevier.com/locate/aei


In the AEC industry, the BIM model is typically considered to be
the preferred design model to start from. Many initiatives that start
from such a BIM model furthermore start from a neutral represen-
tation of the building model, typically captured in the Industry
Foundation Classes (IFC) [6,7], which is developed and maintained
by the BuildingSMART organization [8]. The original representation
of IFC in EXPRESS is very closely affiliated to a class structure in any
programming language or database. Hence, rule checking has typ-
ically been implemented in hard-coded rules.

Recently, however, more and more architectural design and
construction data is now also represented in the Resource Descrip-
tion Framework (RDF) data model [9], possibly referencing state-
ments and concepts in the Web Ontology Language (OWL2) [10].
The underlying logical basis of OWL can promote the realization
of the rule checking process outlined by Eastman et al. [2] using
this additional logical basis. Also [11] indicated the usefulness of
a logical basis in regulation compliance checking, as early as
2003, which was at that time implemented as an addition to plain
XML. The same argument for a semantic or logical basis is also
made in Hjelseth and Nisbet [12].

The rules come in different forms and shapes. It is certainly not
our intention to discuss all these rule representations here, but we
can outline a few. For the rule representation forms, Eastman et al.
[2] presents three different options, namely:

1. using computer language encoded rules,
2. using parametric tables, and
3. language-driven

Of these three, especially the latter is interesting, as a language-
driven approach is particularly good in providing extensibility of
the rule set. As long as one can represent rules in the specific rule
language that is used, one can supply the system with more rules
in an on-demand fashion, which is not possible (or only to a lim-
ited extent) when using computer language encoded rules or para-
metric tables. Eastman et al. [2] further divides the language-
driven implementation methods into two alternatives: either as a
logic-based language or as a domain-oriented language. An exam-
ple of the latter is the Building Environment Rule and Analysis
(BERA) language that is proposed in Lee [13] and Lee et al. [14].
Another example is the rule checking approach proposed in Solihin
and Eastman [15] that relies on Conceptual Graphs (CG), which are
grounded in First Order Logic (FOL). This approach is an example of
a predicate logic-based language for rule checking in construction
industry. With its logical basis in Description Logics (DL) [16], the
semantic rule checking approach as proposed in Pauwels et al. [17]
is another example of such a logic-based language. It relies on
semantic web technologies [18] for the implementation of a lim-
ited acoustical performance check. Also Beach et al. [19] relies on
semantic web technologies for automated regulatory compliance
in the construction sector.

Regardless of the representation that is used to represent the
rules, a number of techniques are available to develop the rules.
Rules can be developed or created manually, which is near to
always the case when representing them in procedural code. When
using a (logic-based) language, there is also a possibility of semi-
automating the development of rules from its human language
representation, as is for example investigated in Zhang and El-
Gohary [20,21].

1.2. Semantic rule checking: the basics

In the previous section, we already saw that the design model
and the rules are two vital elements in any rule checking process.
These elements of the rule checking process have well-defined
terms and definitions in any computer science context. The design

model can be considered as a sample data set (e.g. an IFC building
model). This data set typically follows an agreed structure, vocab-
ulary, or class hierarchy (e.g. the IFC schema). The former, the sam-
ple data set, is commonly understood as an assertion box (the
ABox), whereas the latter, the vocabulary, is commonly known as
a terminological box (the TBox). ABox and TBox components are
often used in scenarios other than rule checking, e.g. query inter-
faces, data exchange, interface design. In the context of rule check-
ing, the rules form a third box in addition to the ABox and TBox,
namely the rule box (the RBox).

At the core of any rule checking process are then three key com-
ponents: (1) a schema that defines what kind of information is
used by the rule checking process and how it is structured (the
TBox), (2) a set of instances asserting facts based on the concepts
defined in the TBox (the ABox), and (3) a set of rules (e.g. IF-
THEN statements) that can be directly combined with the schema
(the RBox). The key advantage in using a ‘language-based’ rule
checking process, is that ABox, TBox and RBox are all stored in a
compatible or identical (logic-based) language. A schematic dis-
play of this setup is provided in Fig. 1.

These three components are realised in various ways depending
on the approach taken and the software system used. In a tradi-
tional hard-coded rule checking process, the schema is typically
represented by the internal object model of the system including
its class hierarchy; the instances are represented by the objects
that follow this class hierarchy; and the rules are represented by
interconnected procedural functions that can follow any kind of
structure, while still being compatible with the class hierarchy of
the system.

This is considerably different from the way in which these three
components take shape in a semantic language-driven approach.
Namely, in this case, the schema is typically represented by an
OWL ontology, the instances are represented by the RDF graph
using definitions of that OWL ontology, and the rules are logical
conjunctions (AND) of declarative IF-THEN statements. Because
of the logical basis of the OWL language in DL [16], the rule check-
ing process is straightforward as soon as all the data and all the
rules are available in a complete and consistent shape: inferences
are generated by generic reasoning engines and results, asserted
as new facts into the graph, are used, e.g. for simple visualisation
in a graphical user interface (GUI).

In this article, we specifically look into the rule checking imple-
mentation method using semantic web technologies for construc-
tion industry. The great advantage of using semantic web
technologies is that the schema, the instances, and the rules can
all be described using one and the same data model or language.
As a result, all three components benefit from the advantages given
by Eastman et al. [2] for any language-driven approach, namely:

1. the possibility to easily retarget an implementation to different
source formats (e.g. an alternative ontology: a Revit ontology
instead of an IFC ontology);

2. portability across contexts, applications and devices, and

Instances (ABox)Schema (TBox) Rules (RBox)

Integration Layer

Graphical User Interface (GUI)

queries

Fig. 1. Schematic view of a rule checking system and its key components.

P. Pauwels et al. / Advanced Engineering Informatics 33 (2017) 68–88 69



Download English Version:

https://daneshyari.com/en/article/6478349

Download Persian Version:

https://daneshyari.com/article/6478349

Daneshyari.com

https://daneshyari.com/en/article/6478349
https://daneshyari.com/article/6478349
https://daneshyari.com

