
Full length article

A string-wise CRDT algorithm for smart and large-scale collaborative
editing systemsq

Xiao Lv a,c, Fazhi He a,b,⇑, Weiwei Cai a, Yuan Cheng a

a State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China
b School of Computer Science and Technology, Wuhan University, Wuhan 430072, China
cDepartment of Computer Engineering, Naval University of Engineering, Wuhan 430033, China

a r t i c l e i n f o

Article history:
Received 29 June 2016
Received in revised form 9 October 2016
Accepted 27 October 2016
Available online 24 November 2016

Keywords:
Smart and large-scale collaborative editing
String-wise operation
Operational transformation
Commutative replicated data type

a b s t r a c t

With the development of big data and cloud computing, real-time collaborative editing systems have to
face new challenges. How to support string-wise operations for smart and large-scale collaborations is
one of the key issues in next generation of collaborative editing systems, which is both the core topic
of collaborative computing area and the fundamental research of many collaborative systems in science
and engineering. However, string-wise operations have troubled the existing collaborative editing algo-
rithms, including Operational Transformation (OT) and Commutative Replicated Data Type (CRDT), for
many years. This paper proposes a novel and efficient CRDT algorithm that integrates string-wise oper-
ations for smart and massive-scale collaborations. Firstly, the proposed algorithm ensures the conver-
gence and maintains operation intentions of collaborative users under an integrated string-wise
framework. Secondly, formal proofs are provided to prove both the correctness of the proposed algorithm
and the intentions preserving of string-wise operations. Thirdly, the time complexity of the proposed
algorithm has been analyzed in theory to be lower than that of the state of the art OT algorithm and
CRDT algorithm. Fourthly, experiment evaluations show that the proposed algorithm outperforms the
state of the art OT algorithm and CRDT algorithm.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Collaborative editing systems (CESs) allow multiple geographi-
cally dispersed users to view and edit the shared document over
computer networks, which have been a core topic of continuous
research in Computer Supported Cooperative Work (CSCW). Over
the past 25 years, an increasing number of collaborative editing
algorithms have been researched, developed and applied for col-
laborative systems in science and engineering, e.g. Google Wave/
Docs,1 2D spreadsheets [1], 2D images [2,3], 3D digital media design
systems [4–6], 2D/3D Computer-Aided Design [7–10] and so on.

More recently, with the development of big data and cloud
computing [11–17], CESs increasingly tend to smart and large-
scale collaborations, which have to face new technical challenges.

Smart and large-scale CESs support tens or hundreds of collab-
orators to share and exchange the intention, idea, knowledge and

wisdom of people in a large-scale collaborative scenario [18–20].
As stated in [21], the CESs should ‘‘make a more intelligent and
semantically meaningful usage of the network resources”. Only if
the ‘‘atomic operation of collaborative editing” is advanced from
‘‘character-wise operation” to ‘‘string-wise operation”, will the
knowledge-based collaboration be effectively supported. In other
words, the collaborative editing operations are always ‘‘knowl
edge-grained” such as blocks or paragraphs in smart and
massive-scale collaborations. Therefore, the string-wise CESs
become the foot-stone of smart collaborations.

In addition, for a large-scale collaboration [22], in which a large
amount of users edit the shared document simultaneously, the
shared document will be updated frequently. This situation will
generally lead to the decrease of collaborative computing perfor-
mance [23,24]. How to enhance the computing performance is
another challenge for the success of smart and massive-scale col-
laborative editing systems. The ‘‘string-wise operation” has a
potential advantage over the ‘‘character-wise operation” for high
efficient collaborations in large-scale collaborative applications.

In a short, string-wise CESs have been the research focus for
smart and large-scale collaborative applications in the time of big
data and cloud computing.

http://dx.doi.org/10.1016/j.aei.2016.10.005
1474-0346/� 2016 Elsevier Ltd. All rights reserved.

q Fully documented templates are available in the elsarticle package on CTAN.
⇑ Corresponding author at: State Key Laboratory of Software Engineering, Wuhan

University, Wuhan 430072, China.
E-mail address: fzhe@whu.edu.cn (F. He).

1 http://docs.google.com.

Advanced Engineering Informatics 33 (2017) 397–409

Contents lists available at ScienceDirect

Advanced Engineering Informatics

journal homepage: www.elsevier .com/ locate/ae i

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2016.10.005&domain=pdf
http://dx.doi.org/10.1016/j.aei.2016.10.005
mailto:fzhe@whu.edu.cn
http://docs.google.com
http://dx.doi.org/10.1016/j.aei.2016.10.005
http://www.sciencedirect.com/science/journal/14740346
http://www.elsevier.com/locate/aei


As a great extension of CSCWD2016 paper [25], this paper pro-
poses a string-wise CRDT algorithm for smart and large-scale col-
laborative editing systems to solve the new challenges. Major
contributions of this paper are listed below.

(1) The proposed algorithm can preserve operation intentions of
collaborative users and maintain the consistency of the
shared document.

(2) The proposed algorithm has been formally proved its cor-
rectness and the intention preserving of string-wise opera-
tions as long as it can satisfy two conditions operation
commutativity (OC) and precedence transitivity (PT).

(3) The time complexity of the proposed algorithm is analyzed
in theory to be lower than that of the state of the art OT algo-
rithm and CRDT algorithm.

(4) The experiment evaluations show that the proposed algo-
rithm has better computing performance than that of the
state of the art OT algorithm and CRDT algorithm.

2. Background and related work

A fully replicated architecture is adopted in CESs in order to
achieve high responsiveness, which brings a great challenge for
the consistency maintenance [26–29]. OT algorithms are particu-
larly suitable for consistency maintenance and have been proposed
for nearly three decades [1–5,7,8,26,27,30–39]. A plethora of OT
algorithms have been increasingly developed for collaborative
applications in sciences and engineering, such as Jupiter [30], Nice
[31], IBM OpenCoWeb,2 CoWord.3 The main idea of OT algorithms is
that local editing operations are executed as soon as they are issued
and then propagated to remote sites. Remote operations need to be
transformed with concurrent operations before their executions in
order to repair divergence. The major advantage of OT algorithms
is the high responsiveness of local operations. Multiple users may
freely and simultaneously generate and edit local operations.
Despite the good local responsiveness, how to support string-wise
operations has troubled the existing OT algorithms.

� Since the first OT algorithm developed by Ellis and Gibbs [26],
most published OT algorithms only support character-based
operations due to the inherent sophistication of OT, which are
not suitable for smart and large-scale collaborations. GOT is
the first work which describes how to support string-based
operations [27], but no published work shows how to achieve
string-based operations [36]. ABTS supports string-based prim-
itive operations and handles overlapping and splitting of oper-

ations, but the time complexity is OðjHj2Þ [36]. Based on ABTS,
ABTSO has improved the time complexity to OðjHjÞ by keeping
history operations according to the operation effects relation
[35]. To the best of our knowledge, ABTSO has the best comput-
ing performance in a representative class of OT algorithms in
publications. Despite the good computing performance, there
is a space for improvement. In addition, ABTSO cannot support
string-wise deletions.

In recent years, another class of collaborative editing algorithms
called CRDT have been proposed and gradually become the hot
research in collaborative computing and distributed computing
[23,40–46]. The main idea of CRDT algorithms is to design commu-
tative concurrent operations. Hence, transformations are not
required anymore and concurrent operations can be executed in
any order. By assigning unique identifiers for all objects of opera-

tions, CRDT algorithms can place all objects into abstract data
structure in a total order. Therefore, CRDT algorithms can preserve
operation intentions of collaborative users and guarantee eventual
consistency. CRDT algorithms have been proved to outperform tra-
ditional algorithms by a factor between 25 and 1000 [44,45]. How-
ever, CRDT algorithms are quite young, how to support string-wise
operations has been a challenge issue.

� In the typical CRDT algorithms, except the literature [23,45],
most existing CRDT algorithms only support character-based
operations. The literature [45] is based onWOOT [40], this work
uses a WOOT-like way to sort concurrent strings in the same
position, the time complexity of integrating remote insertions

is Oðk2Þ; k is the number of the concurrent insertions. With
the increase of the number of concurrent insertions, it costs
much higher computing time. The literature [23] is based on
LOGOOT [41,42], strings are assigned to unique compressed
identifiers with letters of the alphabet, which can reduce the
memory consumption. However, the literature [23] only sup-
port unbreakable line-based operations, which cannot handle
splitting of lines. In addition, similar to LOGOOT, how to make
sure causality is not given.

3. Proposed algorithm

3.1. The integrated string-wise framework

A real-time collaborative system consists of a large number of
collaborative sites. Every site maintains a two-layer data structure
including View and Model. Model is composed of a hash table called
HT and a double-linked list named Lmodel. Lmodel links all visible and
invisible nodes in a total order. Every node represents a string
including a paragraph or a block. HT stores all original and splitting
nodes. View is composed of a double-linked list named Lview, which
can provide the interaction interface for collaborative users. Lview
links all the visible nodes of Lmodel.

Thewhole framework is shown in Fig. 1. The control procedure is
as follows. A user at each site can concurrently generate local oper-
ations and receive remote operations from other sites. The inte-
grated procedures of both local operations and remote operations
include two steps. Firstly, local and remote operations need to find
the target node in HT with unique identifiers. Secondly, the correct
operation position needs to be found in Lmodel before their execu-
tions. The procedure of synchronization between View and Model
needs to make the effects of integrated updates appear in View.

3.2. Basic operations and splitting functions

The basic primitive operations include string-wise insertions
and string-wise deletions. A user may run the following operations
as follows.

(1) LocalInsert(ID tar key; int pos; string str; ID key). (2) Remo-
teInsert(int pos; ID tar key; string str; ID key). (3) LocalDelete(ID
tar key; int pos; int del len; ID key). (4) RemoteDelete(int pos; int
del len; ID key list; ID key). The parameter tar key is used for finding
the target node in HT. The parameter pos is an integer index, which
is used for finding the operation position in Lmodel. The parameter
str is the inserted string, which is specially used for an insertion.
The parameter key is the identifier of the inserted(deleted) string.
The parameters del len is the length of the deleted string, which
is specially used for a deletion. The parameter key list is used for
reserving multiple IDs of deleted nodes.

The target node may be split by current operations. The
splitting cases are as follows. (1) The target node is split into
two sub-nodes by insertions or deletions, which is shown in

2 https://github.com/opencoweb/coweb#readme.
3 http://www.codoxware.com.

398 X. Lv et al. / Advanced Engineering Informatics 33 (2017) 397–409

http://https://github.com/opencoweb/coweb#readme
http://www.codoxware.com


Download English Version:

https://daneshyari.com/en/article/6478407

Download Persian Version:

https://daneshyari.com/article/6478407

Daneshyari.com

https://daneshyari.com/en/article/6478407
https://daneshyari.com/article/6478407
https://daneshyari.com

