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a b s t r a c t

Stability of laminated structural glass is one of the design requirements to be considered due to the brittle
and slender nature of this kind of glass elements. Since laminated glass is mainly manufacture with vis-
coelastic interlayers, its mechanical properties are temperature and time dependent. This implies that,
i.e., the critical load of a laminated glass beam subject to constant compressive load decreases with time
as well as with temperature.
In this paper, the equations of the Euler Theory for buckling of monolithic beams are extended to multi-

layered laminated glass beams using an effective stiffness. This proposal is based on the idea of calculat-
ing the thickness (time and temperature dependent) of a monolithic element with bending properties
equivalent to those of the laminated one, that is, the deflections provided by the equivalent monolithic
beam are equal to those of the layered model with viscoelastic core.
In this work, the analytical predictions are validated by compressive experimental tests carried out on a

simply supported beam composed of three glass layers and two polyvinyl butyral (PVB) interlayers.
Moreover, a finite element model was assembled to validate the proposed methodology for any boundary
conditions. The results shown that a good accuracy can be obtained with the proposed equations being
the errors less than 7% for all the experiments and simulations considered.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Laminated glass is a sandwich or layered material which con-
sists of two or more plies of monolithic glass, whose mechanical
behaviour is commonly assumed linear elastic, and one or more
interlayers of a polymeric material which show a viscoelastic beha-
viour i.e. their mechanical properties are time (or frequency) and
temperature dependent [1,2].

Multi-layered laminated glass panels can be used for many dif-
ferent applications due to the added thickness and strength. They
are commonly used in accessible glazing, i.e. floors, roofs and other
horizontal glazing accessible to the public or at least for cleaning
and maintenance [3]. In these applications, resistance against
impact caused by a hard or soft body, the post-breakage behavior
as well as the slip resistance must be examined [3]. Multilayered
glass beams are also interested in acoustics and structural dynam-
ics in order to reduce the acoustic transmission and amplitude of
vibrations.

If laminated glass elements are subject to compressive loads,
the structural stability is one of the design requirements because

laminated glass elements are brittle and slender. Due to the fact
that the stiffness of the interlayer is temperature and time depen-
dent, the same can be said about the critical load, i.e., the critical
load of a laminated glass beam subject to constant compressive
load decreases with time.

The concept of effective thickness has been proposed in recent
years [4–6] based on the quasi-elastic solution. This method
consists of calculating the thickness (time and temperature depen-
dent) of a monolithic element with bending properties equivalent
to those of the laminated one, that is to say, the deflections pro-
vided by the equivalent monolithic beam are equal to those of
the layered model with viscoelastic core. The concepts of effective
Young modulus and effective stiffness [7] can be used interchange-
ably with the same accuracy.

Several analytical models have been proposed for determining
the critical load of a simply supported laminated glass beam
[8–11]. Aenlle et al. [12] extended the Euler Theory to laminated
glass beams using an effective stiffness (or effective thickness)
and the effect of the boundary conditions is considered through
the buckling ratio b.

In this paper, equations for predicting the critical load of
multi-layered glass beams with different boundary conditions are
proposed based on the methodology proposed by Aenlle et al.
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[12] which uses the Euler Theory [13] of monolithic beams, the
quasi-elastic solution [6] and the effective stiffness concept [7].
In order to validate the model, the critical load of a laminated glass
beams, made of three annealed glass plies and two PVB interlayers,
were predicted using the effective stiffness concept and validated
by experimental tests and numerical models. Moreover, the effect
of the number of layers in the critical load of multi-layered glass
beams are investigated and some recommendations are proposed
for the design of these elements subject to compressive loadings.

2. Theory

The critical load of a simply supported linear-elastic monolithic
beam, according to the Euler Theory is given by [13,14]

Pcrit ¼ p2EI

L2
ð1Þ

Eq. (1) can be extended to laminated glass beams [8–10] using
an effective EIðt;TÞeff , i.e.:

Pcritðt;TÞ ¼ p2EIðt;T Þeff
L2

ð2Þ

In the case of a simply supported laminated glass beam com-
posed of 2 glass layers and one linear-viscoelastic interlayer (see
Fig. 1) the following expression for Iðt;TÞeff :

EIðt; TÞeff ¼ EIT2 1þ YB2

1þ EH1H2t1
Gtðt;TÞðH1þH2Þ

p2

L2

 !
ð3Þ

can be derived from the models proposed in [8–10], where

YB2 ¼ bH2
12H1H2

IT2ðH1 þ H2Þ ð4Þ

The critical load of an elastic monolithic beam with different
boundary conditions can also be calculated with Eq. (1) but using
the buckling ratio b i.e.:

Pcrit ¼ p2EI

ðbLÞ2
ð5Þ

Aenlle and Pelayo [12] proposed to extend Eq. (5) for laminated
glass beams using the equation:

Pcritðt; TÞ ¼ p2EIðt;TÞeff
ðbLÞ2

ð6Þ

where EIðt; TÞeff is an effective stiffness. In the case of a laminated
glass beams with 2 glass layers and one linear-viscoelastic inter-
layer (Fig. 1) Aenlle and Pelayo [12] derived an expression for
EIðt;TÞeff from the model of Galuppi and Royer Carfagni [6] which
is given by:

EIðt;TÞeff ¼ EIT2 1þ YB2

1þ EH1H2t1
bGtðt;TÞðH1þH2ÞwB

 !
ð7Þ

where [12]:

wB ¼ p2

ðbLÞ2
ð8Þ

Fig. 1. Section of laminated glass beams (a) 2 glass layers (b) 3 glass layers and (c) N glass layers of equal thickness.

Nomenclature

A1 ¼ bH1 area of glass layer 1 in laminated glass
A2 ¼ bH2 area of glass layer 2 in laminated glass
A3 ¼ bH3 area of glass layer 3 in laminated glass
E glass Young modulus of glass layers
EtðtÞ viscoelastic relaxation tensile modulus for polymeric

interlayer
GtðtÞ viscoelastic relaxation shear modulus for the polymeric

interlayer
H1 thickness of glass layer 1 in laminated glass
H2 thickness of glass layer 2 in laminated glass
H3 thickness of glass layer 3 in laminated glass

HTOT ¼ H1 þ H2 þ H3H12 ¼ t1 þ H1þH2
2

� �
H23 ¼ t2 þ H2þH3

2

� �
I

second moment of area

I1 ¼ b H3
1

12I2 ¼ b H3
2

12I3 ¼ b H3
3

12IT2 ¼ I1 þ I2 ¼ b H3
1þH3

2
12 IT3 ¼ I1 þ I2 þ I3 ¼

b H3
1þH3

2þH3
3

12 ITN ¼ NbH3

12K2ðt; TÞ
viscoelastic bulk modulus

L length of a glass beam
T temperature
T0 reference temperature

Lowercase Letters
aT shift factor
b width of a glass beam
t time
t1 thickness of polymeric layer 1 in laminated glass
t2 thickness of polymeric layer 2 in laminated glass

Greek letters
g2 loss factor of the polymeric interlayer of laminated glass
m Poisson ratio of the glass layers
m2ðt; TÞ viscoelastic Poisson ratio of the polymeric interlayer
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