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a b s t r a c t

Material anisotropy is widely recognized as the fundamental reason that causes non-coaxiality between
principal directions of stress and plastic strain increment. In order to model the non-coaxiality of soils
from the view of cross-anisotropy, the anisotropic transformed stress method is introduced. By replacing
the ordinary stress with the anisotropic transformed stress, and adopting a normal flow rule in the
transformed stress space, non-coaxiality can be reflected simply within the framework of conventional
elastoplastic constitutive theory. As an example, the unified hardening model is extended to be
cross-anisotropic by this method, and then used to predict the non-coaxiality.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In the conventional elastoplastic constitutive theory, principal
directions of plastic strain increment are assumed to be coaxial
with principal directions of stress. This assumption is called postu-
late of coaxiality, which facilitates the development of constitutive
models.

However, the applicability of the postulate of coaxiality is chal-
lenged by an increasing number of tests on anisotropic soils. Early
in 1970, Roscoe [1] indicated that during simple shear tests on
Leighton Buzzard sand, principal axes of the strain increment did
not coincide with those of stress before dilatancy. Using the direc-
tional shear cell, Wong and Arthur [2] found that if an inherently
anisotropic sample was loaded with the major principal stress
deviating from the direction of deposition, the major principal
strain increment would deviate farther away from the deposition
direction. In addition to simple shear apparatus and directional
shear cell, hollow cylinder apparatus, which is capable of control-
ling both magnitudes and directions of principal stresses, is widely
used to investigate soil behaviors under complex stress paths [3,4].
Tests with fixed principal stress axes [5,6] manifested coaxiality
when the major principal stress was parallel or orthogonal to the
deposition direction, i.e., if the angle between the major principal
stress direction and the deposition direction, ar, was 0� or 90�,
the angle between the direction of the major principal plastic
strain increment and that of deposition, adep , was also 0� or 90�,

respectively. When 0� < ar < 90�, however, ar – adep and non-
coaxiality existed. The largest deviation angle between the princi-
pal stress direction and the principal strain increment direction
was about 11� for dense Portaway sand and occurred when
ar ¼ 30� [7]. Non-coaxiality was much more remarkable in princi-
pal stress rotation, with the non-coaxial angle (adep � ar) up to 30�

for Toyoura sand [8]. The degree of non-coaxiality was influenced
by many factors, such as the material anisotropy, density, loading
history, stress ratio and intermediate principal stress [9–11].

There have been several attempts on developing constitutive
models to describe the non-coaxial behaviors of soils. The ‘double
sliding, free rotating model’ proposed by de Josselin de Jong [12]
was among the first that could account for non-coaxiality. How-
ever, this model presumed that the material was perfectly plastic.
Within the framework of elastoplastic constitutive theory, a
vertex-like yield surface was adopted by Rudnicki and Rice [13]
to describe strain localization into the shear band. Compared with
the conventional model, this model obtained a plastic strain
increment which was not only related to stress but also to stress
increment, so that in some cases principal directions of stress
and plastic strain increment would not be coaxial. Inspired by this
work, Papamichos and Vardoulakis [14], Yang and Yu [15], Yu and
Yuan [16] developed non-coaxial models in which the plastic strain
increment was decomposed into a coaxial component and a non-
coaxial component. The coaxial component was still determined
by the current stress according to conventional models, while the
non-coaxial component, as a correction term to readjust the plastic
flow direction, depended on stress increment. An extra mechanism
was introduced to calculate the non-coaxial plastic strain

http://dx.doi.org/10.1016/j.compgeo.2017.01.013
0266-352X/� 2017 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: School of Transportation Science and Engineering,
Beihang University, 37 Xueyuan Road, Haidian District, Beijing, China.

E-mail addresses: tianyu@buaa.edu.cn (Y. Tian), ypyao@buaa.edu.cn (Y.-P. Yao).

Computers and Geotechnics 86 (2017) 219–229

Contents lists available at ScienceDirect

Computers and Geotechnics

journal homepage: www.elsevier .com/locate /compgeo

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compgeo.2017.01.013&domain=pdf
http://dx.doi.org/10.1016/j.compgeo.2017.01.013
mailto:tianyu@buaa.edu.cn
mailto:ypyao@buaa.edu.cn
http://dx.doi.org/10.1016/j.compgeo.2017.01.013
http://www.sciencedirect.com/science/journal/0266352X
http://www.elsevier.com/locate/compgeo


increment. This method was then extended to three-dimensional
stress space by Qian et al. [17], and was integrated into the rota-
tional hardening subloading surface model by Tsutsumi and Hashi-
guchi [18]. Besides, the description of non-coaxiality could also be
realized by introducing a special mapping rule in which the projec-
tion center was relocatable (Li and Dafalias [19]), or the mapping
direction was along the direction of stress increment (Gutierrez
et al. [8], Lashkari and Latifi [20]). These models are flexible, and
can get good agreement with test results. However, non-coaxial
behaviors are not considered based on material anisotropy, which
is widely recognized as the fundamental reason of non-coaxiality
[2,3,5–11,19,20].

In this paper, non-coaxial behaviors are modeled by considering
the cross-anisotropy of soils. A newly proposed method, called ani-
sotropic transformed stress method [21], is introduced. Using this
method, anisotropic constitutive models can be developed and can
account for non-coaxiality automatically and simply, without
introducing any extra mechanism.

2. Coaxiality in conventional elastoplastic constitutive theory

In the three-dimensional space ðz; x; yÞ, a complete description
of the stress state of an element in the ground needs six inde-
pendent stress components: rz, rx, ry, szx, sxy and syz. And cor-
respondingly, six independent strain components, ez, ex, ey, czx,
cxy and cyz, are needed to fully describe the strain state. The
work of a constitutive model is to provide a stiffness matrix to
connect these stress components with strain components. How-
ever, it is very cumbersome to establish the model under such
large dimension directly. For convenience, three stress invariants,
r1, r2 and r3 (or p, q and h, or I1, I2 and I3), are used in the yield
functions and plastic potential functions of conventional elasto-
plastic constitutive models. A small-scale stiffness matrix
between principal stresses and principal strains can be obtained
first. Then by rewriting the three invariants as functions of the

six stress components, dimensionality is increased and the stiff-
ness matrix connecting all the stress and strain components can
be derived.

The extension from three invariants to six components, how-
ever, implies a limitation to the principal directions of stress and
strain, because the dimensionality is not equivalent. This limitation
is the very postulate of coaxiality. To illustrate this, let us take the
modified Cam-clay model [22] as an example. Its plastic potential
function is expressed as

g ¼ q2 þM2p2 � Cp ¼ 0 ð1Þ
where mean stress p ¼ ðr1 þ r2 þ r3Þ=3; deviatoric stress

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr1 � pÞ2 þ ðr2 � pÞ2 þ ðr3 � pÞ2

q
=

ffiffiffi
2

p
; M = critical state stress

ratio q=p; C controls the size of the plastic potential surface. And
the flow rule is

depi ¼ K
@g
@ri

ð2Þ

where depi = principal value of the plastic strain increment
(i ¼ 1;2;3); K = plastic multiplier. In order to obtain the stiffness
matrix under the general state, p and q are rewritten as rii=3 andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðrij � pdijÞðrij � pdijÞ=2

p
(dij = Kronecker delta), respectively. And

the plastic strain increment depij is calculated by extending the flow
rule to be

depij ¼ K
@g
@rij

ð3Þ

However, the stress components rij extended from p and q are
not independent of each other. Six components have only two
degrees of freedom which are equal to the degree of freedom of
the stress invariants p and q. Because in the case of plane strain
state (sxy ¼ sxz ¼ 0), the principal stress direction can be easily
observed in the ðrz � ryÞ=2 � szy plane, p and q are expressed as
functions of ðrz � ryÞ=2, szy and ðrz þ ryÞ=2 as

Nomenclature

b intermediate principal stress coefficient
e void ratio
e0 initial void ratio
f yield function
Fij fabric tensor
g plastic potential function
H hardening parameter
Ii stress invariant of the ordinary stress tensor (i ¼ 1;2;3)
M critical/characteristic state stress ratio q=p
M critical/characteristic state stress ratio ~q=~p (¼ �qc=�p)
Mf failure stress ratio q=p
Mf failure stress ratio ~q=~p(¼ �qc=�p)
p mean stress of the ordinary stress tensor
�p mean stress of the modified stress tensor
~p mean stress of the anisotropic transformed stress tensor
~p0 intercept of the initial yield surface on the ~p-axis
q deviatoric stress of the ordinary stress tensor
�q deviatoric stress of the modified stress tensor
�qc deviatoric stress at the triaxial compression state in the

space of �rij
~q deviatoric stress of the anisotropic transformed stress

tensor
ar angle between the major principal direction of rij and

the z-axis
a�r angle between the major principal direction of �rij and

the z-axis

a~r angle between the major principal direction of ~rij and
the z-axis

adr angle between the major principal direction of drij and
the z-axis

ade angle between the major principal direction of deij and
the z-axis

adep angle between the major principal direction of depij and
the z-axis

b non-coaxial angle
coct octahedral shear strain
dij Kronecker delta
D principal value of the fabric tensor
eij strain tensor

epij plastic strain tensor

epv plastic volumetric strain
~g stress ratio ~q=~p
h Lode’s angle of the ordinary stress tensor
j slope of the swelling line
k slope of the normal compression line
K plastic multiplier
m Poisson’s ratio
rij ordinary stress tensor
�rij modified stress tensor
~rij anisotropic transformed stress tensor
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