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a b s t r a c t

Brittleness index is one of the critical geomechanical properties of unconventional reservoir rocks to
screen effective hydraulic fracturing candidates. In petroleum engineering, brittleness index can be
generally calculated from the mineralogical composition by X-ray diffraction (XRD) test or rock me-
chanical parameters by tri-axial experiments and well logs. However, mineral composition analysis or
tri-axial experiments cannot produce continuous brittleness profile. Well log-based brittleness index
prediction conventionally relies on Young's modulus and Poisson's ratio, but sometimes shear
compressional velocity is not available to derive elastic inputs for the brittleness index calculation. This
study proposes some data-driven practical brittleness prediction approaches based on back-propagation
artificial neural network (BP-ANN), extreme learning machine (ELM) and linear regression using
commonly available conventional logging data and lab mineralogical-derived brittleness. A dataset of 71
mineralogical-derived brittleness measurements from Silurian Longmaxi marine shale, Jiaoshiba Shale
Gas Field, Sichuan Basin, China were established. The model comparisons and error analysis reveal that
the application of artificial intelligence models can be more effectively applied to brittleness prediction
compared with simple regression correlations. Both BP-ANN and ELM models are competent for brit-
tleness prediction while BP-ANN model can produce slightly better brittleness prediction results with
same inputs and ELM model require less running time. Thus, more choices can be made according to
accuracy and computational speed demand. Moreover, an overall ranking of sensitivity degree is then
provided to show the impacts of different well logs as inputs on the BP-ANN and ELM model, which is
helpful to find optimal inputs in given case. Comparing to traditional well-log based brittleness ap-
proaches, data-based approaches show its wider applications because the integration of mineralogical
composition and well log information can provide continuous brittleness profile in terms of high ac-
curacy while acoustic full waveform velocities are no longer necessary inputs in brittleness evaluation.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Shale gas is becoming a significant contributor to gas produc-
tion across the world. Due to the ultra-low permeability of shale
reservoirs, the combination of horizontal drilling and multistage

hydraulic fracturing technology is commonly used to enhance
shale gas production, but field experiences reveal that not all hy-
draulic fracturing targets can yield commercial production.
Consequently, screening prospected fracturing candidates are
necessary before multi-stage hydraulic fracturing treatments
(Cipolla et al., 2008; King, 2010; Zhou et al., 2015). Typically, brittle
shales are easy to be fractured under tensile and shear loads, so
brittleness is introduced as a critical indicator to assign perforation
locations. Since brittle rocksmay be relatively easy to fracture, thus
high brittleness is generally equivalent to a high possibility of large
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stimulated reservoir volume (SRV) (Sondergeld et al., 2010).
Moreover, in addition to indicate efficient fracture initiation and
propagation and increased fracture network complexity, forma-
tion brittleness can be used to justify the resistance to proppant
embedment (Kias et al., 2015). Therefore, an accurate prediction of
brittleness is significant for both shale gas well completion and
production.

In recent years, rock brittleness has been extensively studied by
many researchers in the geo-mechanics filed. However, the defi-
nitions of brittleness are still ambiguous, an agreement of the
measurement standards of brittleness has not yet been reached
(Kahramana, 2002; Altindag, 2003; Goktan and Yilmaz, 2005;
Wang and Gale, 2009; Wang et al., 2015; Zhang et al., 2016). Cur-
rent approaches include stress-strain curves upon loading and
failure, pre-peak and post-peak behaviors or mechanical properties
from tri-axial tests can be used to evaluate brittleness. Since stress-
strain curved based brittleness indexes are hard to obtain thus UCS
(unconfined compressive strength) and tensile stress, and brinell
hardness tests are commonly proposed as alternatives for brittle-
ness evaluation (Hucka and Das, 1974; Holt et al., 2011; Li et al.,
2012; Zhou et al., 2014). Except for stress and stain based and
elastic based parameters, shale brittleness also can be calculated by
mineralogical compositions. Compared with clayminerals, the high
content of quartz and carbonate would increase shale brittleness.
(Jarvie et al., 2007; Sondergeld et al., 2010). In addition, feldspar
and dolomite are sometimes regarded as brittle components in
some shale gas plays (Jin et al., 2014a). The big advantage for
mineral-based brittleness calculation is mineralogical information
can be obtained from well logs, cores or drilling cuttings although
lab experiments are time-consuming and expensive. However, rock
brittleness from laboratory mechanical testing is still preferred at
the interval of interest because additional information can be
provided for compatible proppant and fracturing fluids
preparation.

The brittle and ductile behavior of rocks is considered to be the
comprehensive responses of the mineral compositions, stress,
strain rate and fluids within a rock matrix under certain pressure
and temperature conditions. Moreover, as shale gas formations
have extremely wide horizontal span and large thickness, the
continuous brittle information obtained directly by well logs is
more practical and universally applicable. (Rickman et al., 2008).
Well log based rock brittleness prediction needs elastic parameters
like Young's modulus and Poisson's ratio, whereas shear wave
logging is not conventionally performed due to the cost of logging
service, therefore sometimes elastic parameters should be roughly
calculated from local empirical fitting equations, which potentially
results in tremendous errors for final elastic-based brittleness re-
sults. To solve these problems, some authors made some attempts
to predict brittleness based on data-based approaches because
data-based approaches are free from the constraints of function
models and use less core data. Lai et al. (2015) performed a sta-
tistical regression analysis to find relationships between brittleness
and conventional well logs, and the ratio of gamma rays to the
photoelectric absorption cross section index showed a good cor-
relation with mineralogical brittleness. Jin et al. (2014b) attempted
to build correlations between mineralogical brittleness and
compressional slowness for four U.S. shale plays. The results were
more promising for predicted brittleness than only using neutron
porosity. Previous study indicates some good relationships be-
tween mineralogical brittleness and the ratio of gamma rays to the
photoelectric absorption cross section index, porosity, compres-
sional slowness et al. (Heidari et al., 2014; Lai et al., 2015). But these
relationships are derived from local data whereas these empirical

relationships are random and virtually non-existent in the other
shales. In addition, porosity and compressional slowness logs are
easily influenced by organicmatter content, complicated lithofacies
and the other potential geochemical factors at specific locations.
Considering high uncertainty in brittleness evaluation with simple
regression, artificial intelligence technology is a powerful tool to
model complex systems that seek to simulate human brain
behavior by processing data on a trial-and-error basis. Because its
advantages in recognize, cluster and organize complicated
nonlinear relationships between parameters, the application of
artificial intelligence approaches have been successfully applied in
many well logging fields, including formation permeability,
porosity and total carbon content (TOC) prediction (Baneshi et al.,
2013; Tan et al., 2015). However, little research has been done on
shale brittleness index prediction using any artificial intelligence
approaches.

This study seeks to show the application of two artificial intel-
ligent methods (back propagation-artificial neural network(BP-
ANN) and extreme leaning machine(ELM)) for rock brittleness
prediction with conventional well logs and discrete lab mineral-
ogical brittleness. Moreover, linear regression method was also
applied to make a comparison in this study. A mineralogy-based
brittleness dataset collected in the Silurian Longmaxi marine
shales was used to develop these models. With the help of cross
plotting and correlation matrix analysis, sensitivity ranks of each
well logs on brittleness was investigated. With these variables, the
performances between linear regression model, BP-ANN and ELM
model were compared. Numerical results obtained from developed
neural network models reveal the high accuracy and efficiency of
two artificial intelligent techniques on the prediction process,
which can very helpfully be used for better brittleness predictions
using available experimental data.

2. Artificial neural networks and extreme learning machine

Artificial neural networks (ANNs) are models of information
processing that seek to simulate human brain behavior. It has been
well-known as a tool of pattern recognition, function approxima-
tion, dynamic modelling, data mining, time-series forecasting et al.
(Lu et al., 2003; Dehghani et al., 2008; Mozaffari and Azad, 2014).
There are many types of neural networks, but the basic principles
are quite analogous. The most popular training algorithm of ANNs
is the back-propagation (BP) and some of its different variants.
Standard BP is a gradient descent algorithm. There are some
inherent problems which are frequently encountered in the use of
this algorithm, e.g. slow convergence, easiness in get stuck in a local
minimum and poor generalization (Chau, 2007). To overcome these
obstacles, many improvements for BP networks have been inven-
ted, such as adaptive adjustment of learning rate, adding regulari-
zation and introducing momentum terms et al. However, the
optimization of BP algorithm is beyond the scope of this paper.
Therefore, a simple three-layered back-propagation network is
introduced in this study.

The Extreme LearningMachine (ELM) algorithm is considered to
be a Generalized Single-Layer Feedforward Neural Network
(GSLFN). The essential idea of ELM is the random initialization of
weights between the input and hidden layers (Huang et al., 2004;
Chorowski et al., 2014; Huang, 2014). Thus, the use of ELMs as
neural network algorithms has shown good speed performance.
Considering an ELM architecture with M hidden neurons, we as-
sume that the actual outputs are identical to the desired output,
which represents the difference between the estimated and the
desired output is zero. Then, the weights between hidden and
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