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a  b  s  t  r  a  c  t

To  analyze  the  evolutionary  dynamics  of a mutant  population  in  an  evolutionary  experiment,  it  is
necessary  to  sequence  a vast  number  of  mutants  by high-throughput  (next-generation)  sequencing  tech-
nologies,  which  enable  rapid  and  parallel  analysis  of multikilobase  sequences.  However,  the  observed
sequences  include  many  errors  of base  call.  Therefore,  if next-generation  sequencing  is  applied  to  analysis
of  a heterogeneous  population  of  various  mutant  sequences,  it  is  necessary  to discriminate  between  true
bases  as point  mutations  and  errors  of  base  call in  the  observed  sequences,  and  to subject  the  sequences
to  error-correction  processes.  To  address  this  issue,  we  have  developed  a novel  method  of  error  correc-
tion based  on  the  Potts  model  and  a  maximum  a posteriori  probability  (MAP)  estimate  of  its parameters
corresponding  to the “true  sequences”.  Our  method  of  error  correction  utilizes  (1)  the  “quality  scores”
which  are  assigned  to individual  bases  in  the  observed  sequences  and (2)  the neighborhood  relationship
among  the observed  sequences  mapped  in  sequence  space.  The  computer  experiments  of  error  correction
of artificially  generated  sequences  supported  the effectiveness  of our  method,  showing  that  50–90%  of
errors  were  removed.  Interestingly,  this  method  is analogous  to a  probabilistic  model  based  method  of
image  restoration  developed  in  the field  of  information  engineering.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Many kinds of evolutionary experiments, by using bacteria
(Barrick et al., 2009), viruses (Meyer et al., 2012) or self-replicating
molecular systems (Kita et al., 2008; Ichihashi et al., 2013), have
been conducted over the world, and then it becomes more and more
necessary to analyze an evolutionary dynamics and statistical prop-
erties of fitness landscapes by sequencing a vast number of mutants
in the evolving population (Betancourt, 2009; Pitt, and Ferr-
D’Amar, 2010; Steinbruck et al., 2011; Otwinowski et al., 2013). This
can be realized by high-throughput deoxyribonucleic acid (DNA)
sequencing (called the “next-generation” sequencing) technologies
(Eid et al., 2009; Quail et al., 2012; Liu et al., 2012), which enable
rapid and parallel analysis of multikilobase sequences. However,
the observed sequences include many errors of base call. Therefore,
if next-generation sequencing is applied to analysis of a heteroge-
neous population of various mutant sequences, it is necessary to
discriminate between true bases as point mutations and errors of
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base call in the observed sequences, and to subject the sequences
to error-correction processes.

Many studies of error correction methods for next-generation
sequencing have been reported (e.g. Wijaya et al., 2009; Zhao et al.,
2010; Ilie et al., 2011; Yang et al., 2011). Several groups reported
error correction methods of next-generation sequencing data to
estimate the genetic diversity in quasispecies of viruses, that is, the
occurrence-frequency distribution of mutant sequences in quasis-
pecies (Zagordi et al., 2010a, 2011; Prosperi et al., 2011; Prosperi
and Salemi, 2012; Astrovskaya et al., 2011; Skums et al., 2012). For
example, in Zagordi et al. (2010b), each of the sequenced frag-
ments (called the “reads”), which contain point mutations and
base-call errors, is classified into several clusters by using a model-
based probabilistic clustering algorithm. This clustering algorithm
is based on a Bayesian statistics using the “Dirichlet process mixture
(DPM)”. Then, the consensus sequence of each cluster represents
the true (original) sequence.

We  have developed a novel method of error correction based on
the Potts model and a maximum a posteriori probability (MAP) esti-
mate of its parameters corresponding to the “true sequences”. Our
method of error correction utilizes (1) the “quality scores” which
are assigned to individual bases in the observed sequences and
(2) the neighborhood relationship among the observed sequences
mapped in sequence space. The quality scores are encoded by
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Ascii code in FASTQ files (Cock et al., 2010). Based on the concept
of sequence space (Eigen and Winkler-Oswatitsch, 1990), several
mutant sequences which are similar to an arbitrary sequence X
are located near the sequence X in sequence space. These mutant
sequences are called the “neighborhoods” of the sequence X. Error
correction of the sequence X is conducted by referring to the
sequence information in the neighborhoods. For example, let us
consider that a letter at the ith position on the sequence X is “A”,
while letters at the same position on other sequences in the neigh-
borhoods are “T”. If the quality score assigned to “A” takes a high
value and those assigned to “T” take low values on average, the “A”
is likely to be the true letter. If the quality score assigned to “A”
takes a low value and those assigned to “T” take high values on
average, the “A” is likely to be an error and should be replaced with
“T”. The purpose of this study is to develop a method to imple-
ment these processes automatically in a rational way. A marked
difference between our method and other ones resides in that our
method does not perform the clustering of reads based on their
similarity, but utilizes the quality scores which are transformed to
the error probabilities of base call.

Our method of error correction is analogous to a probabilistic-
model-based method of image restoration developed in the field
of information engineering (Bilbro et al., 1992; Pryce and Bruce,
1995). Therefore, we can obtain several useful ideas from this field.
To evaluate the performance of our method, we carried out com-
puter experiments of error correction by generating 1024 artificial
DNA sequences in a simulated evolving population. The results
of the computer experiments supported the effectiveness of our
method. This paper reports a novel approach toward a system-
atic error correction in a set of various mutant sequences through
next-generation sequencing.

2. Method

2.1. A mathematical model of DNA sequencing for an evolving
mutant population

We  consider an evolving population of various mutant DNA
sequences in an evolutionary experiment. We  assume that muta-
tional events in evolution are only base substitutions, and then the
sequence lengths for all the mutants are fixed with a constant �.
Let i be the position number along each sequence (i = 1, 2, . . .,  �),
and let � ≡ 4 be the number of available letters (=bases). Arbitrary
M (= 103–104) samples are picked from among the mutant popula-
tion randomly, and each of them is referred with the serial number
m or n (m,  n = 1, 2, . . .,  M).  The sequence information of each sam-
ple is provided by next-generation sequencing. For mathematical
formulation, three types of “sequences” are conceptually or really
assigned to each of the M samples (Fig. 1):

True sequence: the true sequence of a sample m is represented
by x1(m)x2(m) . . . x�(m),  where xi(m) is the “true letter” at the ith
position for the sample m. (We  never know the true sequence.)
Observed sequence: this is obtained by analyzing the true
sequence through next-generation sequencing (each observed
sequence is called the “read”). The observed sequence of a sam-
ple m is represented by y1(m)y2(m) . . . y�(m), where yi(m)  is the
“observed letter” at the ith position for the sample m.
Predicted sequence: this is obtained by subjecting the observed
sequence to error-correction processes. The predicted sequence is
the most probable candidate of the true sequence. The predicted
sequence of a sample m is represented by x̂1(m)̂x2(m). . .̂x�(m),
where x̂i(m)  is the “predicted letter” at the ith position for the
sample m.

These three types take the same sequence length �, according to
the below assumption.

Mathematically, the sequence information of the true sequences
is transformed to the observed sequences with many (apparent)
substitutions caused by base-call errors. We  assume that, base-call
errors do not cause (apparent) insertions and deletions for simplic-
ity. 1 A “quality score” Qi(m)  is assigned to the observed letter yi(m)
for every position i and every sample m. The quality score Qi(m) is
transformed to the error probability pi(m)  that a base call at the ith
position for a sample m results in failure. We  assume that pi(m)  is
given by an unique function of Qi(m):

pi(m)  = f (Qi(m)) for all m and i. (1)

Namely, a base call results in

yi(m)

{
= xi(m), with probability of 1 − pi(m)

/= xi(m), with probability of pi(m).

To determine the predicted sequences for the M samples through
error correction, the available information is (1) a set of the
observed sequences for the M samples and (2) a set of the quality
scores for all letters in the observed sequences: {yi(m), Qi(m)|i = 1,
2, . . .,  � ; m = 1, 2, . . . M}.

2.2. Definition of the neighborhoods of each sample in sequence
space

Our method of error correction is based on the spatial distribu-
tion of a mutant population in sequence space (Fig. 1b). We  denote
a pair of samples m and n by (m, n). Let dy(m, n) be the Hamming
distance between the observed sequences for the samples m and n:

dy(m, n) ≡ � −
�∑

i=1

ı(yi(m), yi(n)), (2)

where ı(∗ , ∗) represents the Kronecker’s delta. Here, we  define the
“neighborhoods” of each sample in sequence space, based on the
frequency distribution of the Hamming distance dy(m,  l) from a cer-
tain sample m to arbitrary samples l (Fig. 1c). Let E[d]m and E[d2]m

be the following averages of dy(m,  l)b:

E[db]m =
∑

l /=  mdy(m, l)b

M − 1
(b = 1, 2),  (3)

where
∑

l /=  m means the sum over all the samples except the sam-
ple m. The standard deviation of dy(m,  l) is given by

SD[d]m ≡
√

E[d2]m − E[d]m
2. (4)

Then, we introduce a critical Hamming distance for a sample m as
follows:

d̂m ≡ E[d]m − 3 × SD[d]m. (5)

We  define that a sample n (or m)  is the “neighborhood” of the
sample m (or n), if

dy(m, n) ≤ max{d̂m, d̂n} (6)

(Fig. 1c). A set of all the neighborhoods of the sample m,  denoted by

Snei(m)  ≡ {n|n is a neighborhood of m}, (7)

is utilized in error correction of the observed sequences
(Fig. 1b).

1 This assumption does not hold in real cases. Our method can be applied to DNA
sequences in a protein coding region, because insertions and deletions in these
sequences cause lethal proteins through the frame shift in translation. This is the
limitation of the current method. See Section 4.
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