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Kinetic models are crucial to quantitatively understand and

predict how functional behavior emerges from dynamic

concentration changes of cellular components. The current

challenge is on resolving uncertainties about parameter values of

reaction kinetics. Additionally, there are also major structural

uncertainties due to unknown molecular interactions and only

putatively assigned regulatory functions. What if one or few key

regulators of biochemical reactions are missing in a metabolic

model? By reviewing current advances in building kinetic models

of metabolism, we found that such models experience a

paradigm shift away from fitting parameters towards identifying

key regulatory interactions.
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Introduction
Computational models provide a framework for integrat-

ing existing knowledge about metabolic networks with

experimental data, thus enabling quantitative under-

standing of metabolism and its regulation. Their ulti-

mate goal is to predict phenotypes that result from the

reorganization of metabolism after genetic or environ-

mental perturbations. Currently this is achieved by

constraint-based approaches that rely exclusively on

reaction stoichiometries. These models employ meta-

bolic networks based on genome sequences, resulting in

predictions that advanced many biotechnological appli-

cations [1] and brought fundamental biological insights

[2,3]. Yet, these models are static by predicting what

metabolic fluxes are but not how they are achieved. What

is missing are reaction kinetics and their regulators,

whose implementation through ordinary differential

equation (ODE) models allows to simulate dynamics

of metabolism.

ODE models are based on mathematical equations

describing reaction fluxes as a function of metabolite

and enzyme concentration (Figure 1) that can describe

metabolism mechanistically or coarse-grained. In coarse-

grained models, metabolism is broken down to its essential

features and such models successfully addressed key bio-

logical questions about cellular economics [4] or allocation

of proteomic resources [5]. However, the high abstraction

level precludes identification of molecular targets for appli-

cations like metabolic engineering or drug design. Con-

versely, mechanistic models contain many molecular

details and aim to identify molecular targets that control

metabolic fluxes. Although formal control theory

approaches were developed for this purpose [6,7], mechan-

istic models are still an exception in biotechnological

applications today.

The prevailing problem is our incomplete knowledge

about kinetic parameters and regulatory interactions, com-

plicating enlargement of coarse-grained models and limit-

ing predictions of mechanistic models. The difficulty is to

decide a priori which of the many known interactions to

include in a model, and key regulators are often unknown

altogether. Nevertheless, several successful metabolic

models with kinetic information were published over

the past three years. What has enabled their predictions?

First, we reviewed approaches that resolve parameter

uncertainties by integrating experimental data with kinetic

models. Since many of the recent models couple regulatory

mechanisms with metabolism we discuss advances based

on including allosteric enzyme–metabolite interactions,

transcriptional regulation and signaling pathways. Finally

we introduce the nascent approach of ensemble modeling

that systematically addresses structural uncertainties about

regulatory mechanisms.

Parameter fitting
Increasingly comprehensive multi-omics data sets

become available for stationary [8–10] and dynamic con-

ditions [11]. The current challenge is to use such data to

increase model information content and predictive power.

Usually this is achieved through parameter identification

in metabolic models using computational methods that

drew much attention in the recent years [12,13]. Non-

linear regression is a method to fit parameters to a series of

steady state experiments (Figure 2a). For instance, Reed

and colleagues revised a benchmark model of Escherichia
coli central metabolism using non-linear regression to a

multi-omics dataset [14�]. They exploited information

about parameter confidence intervals to select targets

for model simplification, enabling predictions about

putative regulatory enzyme–metabolite interactions and
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flux ranges. The same data set was used to develop a

parameter estimation method that compensates for miss-

ing data [15]. Both studies present systematic rigorous

parameter fitting to steady state data. Integrating the

more informative dynamic data with kinetic models

requires global optimization methods that are computa-

tionally costly (Figure 2b). Consequently large efforts

focused on developing efficient optimization algorithms,

exceeding a hundred publications already some years ago

[16]. New algorithms focus on the confidence of esti-

mated parameters [17–19] and on reducing computational

costs by slope-estimation methods [20,21].

The above methods aim at high quality fits to existing

experimental data through identification of a single,

optimal parameter set. A major problem is that this

optimum is often local, meaning that other parameter

sets can lead to a model that performs equally well or

better. Multi-start optimization and random sampling

methods provide a solution to this problem and in particu-

lar the latter method has become increasingly popular.

Random sampling populates the model with random

kinetic parameter sets and averages predictions from

the best parameters sets (Figure 2c). To improve random

exploration of a high-dimensional parameter space, Liao

and colleagues constrained sampling to parameter sets

that achieved the experimentally determined steady state

[22�]. This approach was applied to obtain 24 out of 5000

parameter sets for a model of E. coli central metabolism

that matched mutant physiology and enabled prediction

of validated metabolic engineering targets. Related

approaches integrate Monte Carlo sampling and Meta-

bolic Control Analysis to search for regulatory sites [23] or

to identify drug targets [24,25]. The success of these

random sampling methods shows that good predictions

do not necessarily require precise parameters, as already

realized a couple of years ago [26].

How important are precise parameters for a model’s

ability to predict unobserved data? First, only few

parameters might limit the parameter space and a

divide-and-conquer approach was developed to infer this

space from multi-omics data [27]. Second, Steuer et al.
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Figure 1
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ODE-based kinetic models. Reaction kinetics and their parameters

determine how concentrations of metabolites and enzymes influence the

reaction rate. The reaction rate depends also on allosteric effectors,

transcriptional regulation and post-translational modifications, which

change enzymatic activity. Reaction kinetics are summed up in ordinary

differential equations that describe the mass balances around a metabolite.

Figure 2
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Parameter fitting. (a) Regression analysis using multi-omics data from steady state experiments performed under different conditions results in

parameter values and their confidence intervals. (b) Minimization of residuals between dynamic data and simulation results in optimized parameter

values. Information about parameter confidence intervals is not straight-forward. (c) Random sampling identifies regions in the parameter space that

match experimental data equally well.
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