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their fundamental behaviors in PMS activation, as well as synthetic approaches. In addition, influencing

Keywords:
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1. Introduction

Organic contaminants in water remains being a great con-
cern to the environment, especially those refractory and/or
non-biodegradable pollutants that can hardly be treated by conven-
tional methods. In recent decades, advanced oxidation processes
(AOPs), which involve highly reactive oxygen species like hydroxyl
radical (*OH), have attracted increasing attention due to their
potential capability in the removal of recalcitrant organic pollut-
ants. Upon such strong oxidants, organic pollutants are destructed
into innocuous or low toxic small compounds, or even thoroughly
mineralized into carbon dioxide and water [1,2]. As typical *OH-
generating AOPs, Fenton reaction and its derivative technologies,
such as photo-Fenton [3], electro-Fenton [4,5], sono-Fenton [6] and
sono-photo-Fenton [7,8], are most popular due to the production
of strong oxidant *OH (oxidation potential is 1.8-2.7V vs. normal
hydrogen electrode (NHE)) [9]. However, these methods keep fac-
ing several drawbacks, including massive utilization of ferrous salts
and H,0,, chemical instability and difficulties in the storage and
transport of the oxidant, low optimal reaction pHs (2-4), and sub-
sequent separation and post-processing of huge amounts of sludge
[10-13].

Advanced oxidation processes based on sulfate radical (SO4°*~)
(SR-AOPs) have become to be a promising alternative owing to a
series of merits that do not share with those *OH-generating meth-
ods: (a) SO4°*~ possesses an oxidation potential (2.5-3.1V vs. NHE)
comparable or even higher than *OH [14]; (b) SO4*~ reacts more
selectively and efficiently via electron transfer with organic com-
pounds that contain unsaturated bonds or aromatic T electrons,
while *OH may also react with diverse background constitutes by
hydrogen abstraction or electrophilic addition at high reaction rates
[14-16]; (c) SO4°~, as a dominant oxidizing species, would react
efficiently with organic compounds over a wide pH range of 2-8
[17-19]; (d) The half-life period of SO4°~ is generally supposed to
be 30-40 s, which enables SO4°~ to have more stable mass trans-
fer and better contact with target compounds than *OH (less than
1s) [20-22].

SO4°~ can be produced by radiolysis, photolysis, pyrolysis or
chemical activation of peroxymonosulfate (PMS, HSO5~) or persul-
fate (PS, S;0g2~) [23-27]. The oxidation potential of PMS (1.82V)
is higher than H,0, (1.76V) but lower than PS (2.01V) [28].
However, PMS displays a more efficient performance in organic
degradation processes [29]. Oxone, a commercial name of potas-
sium peroxymonosulfate (2KHSO5-KHSO4-K;S04), is a versatile and
environmental friendly oxidant that has been widely utilized for
bleaching, cleaning and disinfection and more importantly as a
favorable source of PMS [30-32]. In fact, PMS can be activated by
various transition metallic ions, such as Mn?*, Ce3*, Ni2*, Fe?*, V3*,
Ru3* and so forth. Among them, the Co2*/PMS system demonstrates
the best performance that is even superior to traditional Fenton
reaction at neutral pHs and with lower dosage of reagents [33,34].

Since catalytic decomposition of PMS using cobalt was first
reported in 1958 [35], Co2* /PMS system has successfully applied in
chemiluminescent reactions [36,37], determination of trace Co2*
and PMS in aqueous solutions [38,39], modification of DNA [40]
and SR-AOPs [30,41-43]. Cobalt-mediated activation of PMS can be
illustrated as Fig. 1 [44]. It is apparent that the formation of CoOOH*,
which is regarded as the most effective species to activate PMS (Eq.
(1)), is the rate-limiting step [45,46], while the regeneration of Co2*
by reducing from Co3* (Eq. (2)) is the crucial step to maintain the
reactions at a low dosage of cobalt [47,48].
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Fig. 1. Mechanism on SO4*~ chain reactions.
Source: Reproduced with permission from Ref. [31].

The average cobalt concentration in serum and urine of people
are approximately 0.1-0.3 wgL~! and 0.1 wg L1, respectively [49].
Although cobalt is claimed not being a hazardous chemical, several
researches showed that excessive cobalt ions are possibly toxic and
carcinogenic, leading to serious health problems such as asthma,
pneumonia and cardiomyopathy [48,50,51]. Homogeneous cat-
alytic reactions of Co2*/PMS system in aqueous solutions discharge
cobalt ions containing water, which is a potential threat to human
beings and increases the operation cost due to the loss of cobalt.
PMS activation using cobalt containing materials as heterogeneous
catalysts (Co/PMS) seems to be a promising strategy. Multifarious
heterogeneous cobalt-based catalysts have been investigated so far,
including cobalt oxides, spinel-type ferrite particles and immobi-
lized cobalt catalysts [51-58]. This review aims to provide a latest
summary of various heterogeneous cobalt-based catalysts for PMS
activation and their synthetic strategies. The influencing factors
in the decontamination reactions, advanced techniques of syner-
gistic heterogeneous Co/PMS systems and possible environmental
applications will also be introduced. Challenges confronted in the
application of Co/PMS are discussed in the conclusion and outlook
section.

2. Heterogeneous catalysts
2.1. Cobalt oxide

Cobalt oxide is versatile in various industrial sectors, such
as rechargeable batteries [59], air pollution control [60],
Fischer-Tropsch synthesis [61] and gas sensors [62]. Up to
now five cobalt oxides, CoO, Co0O,, Co,03, CoO(OH) and Co30y4,
have been reported. Among these species, CoO and Co304 are more
frequently investigated while CoO; are thermally unstable [63-65].
Dionysiou’s group first studied the heterogeneous activation of
PMS by CoO or Co304 [66]. It was found that CoO/PMS system was
inclined to be homogeneous because of significant dissolution of
Co, which was attributed to the high solubility of CoO in water
(0.313mg/100g H,0) [49]. Chan et al. have found that even the
filtrate of CoO possesses the ability to activate PMS [54]. However,
in the form of Co304, the leakage of cobalt ions is much suppressed
due to the bound of CoO in the net of Co,053 [66]. Yu et al. have pro-
posed the mechanism of Co304/PMS system, in which Co2* ions are
produced and participate in homogeneous redox reactions (Fig. 1),
then Co3* ions precipitate back into the crystal lattice of Co304,
so as to decrease the loss of cobalt [67]. As the relatively higher
stability, Co304 based SR-AOPs have been extensively investigated.

Plentiful methods have been applied to synthesize Co304
nanoparticles, such as thermal decomposition [68], polymer com-
bustion [69], hydrothermal treatment [70,71], and sol-gel synthe-
sis [72]. Among them, direct thermal decomposition of inorganic
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