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h i g h l i g h t s

• Compressible Navier–Stokes flow with pressure-dependent viscosity and Navier-slip.
• Second-order perturbation solution with compressibility as perturbation parameter.
• Viscosity–density parameter at second order for axial velocity, density, flow rate.
• Viscosity–density parameter at first order for pressure, Darcy friction factor.
• Darcy friction factor, pressure drop may increase due to viscosity–pressure dependence.
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a b s t r a c t

A perturbation solution is derived for weakly compressible force-driven flow through a cylinder of fixed
cross-section, with pressure-dependent viscosity and Navier-slip at the wall. The compressibility number
is used as the perturbation parameter and a solution is derived up to second order. The perturbation
solution is used to assess changes in flow for different Reynolds numbers, Froude numbers, aspect ratios,
compressibilities, pressure-dependent viscosities and slip values. The viscosity–pressure dependence is
controlled by compressibility and by a viscosity–density parameter. The following results are found:
the viscosity–density parameter appears only at second-order for axial velocity, density and average
volumetric flow rate, while at first order for pressure, average pressure drop and average Darcy friction
factor; the volumetric flow rate decreases with increasing compressibility if forcing is small enough,
increases with slip, and decreases with viscosity–density parameter; the average Darcy friction factor and
average pressure drop can increase with increasing compressibility if the viscosity–density parameter is
large enough. Although these results are as expected, the key contribution of this paper is the derivation
of analytical expressions for the flow that incorporate the pressure dependence effects.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Many engineering models consider flow of an incompressible
fluid subject to the no-slip boundary condition at the walls of the
flow domain. In recent years, the effect of compressibility and wall
slip on flow has gained popularity.

Applications for compressible flows that can still be treated
as isothermal Newtonian fluids include high pressure flows en-
countered in polymer and food processing, pumping of crude oil
and fuel oil, fluid film lubrication, microfluidics, pharmaceutical
tablet manufacturing and some geophysical flows [1–4]. Flows can
involve high speeds such as in high-speed water jet cutting [5],
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as well as low-speed flows involving long pipelines [6], extru-
sion processes [7] and extrudate swell flows [8–10]. Wall slip
has historically been used primarily for complex fluids such as
polymer melts or concentrated solutions [11], but current, more
sophisticated measuring devices have created a refound interest
in the subject, especially in the fields of microfluidic and micro-
electromechanical devices [12]. Experimental verification of slip
for Newtonian fluids is reviewed in [13].

In some applications, although the viscosity can become
density-dependent, the flow can still be treated as incompress-
ible since the effect of pressure is much larger on the viscosity
than on the mass density [11,14]. However, in waxy crude oil
transport, polymer extrusion and polymer injection molding for
example, the flow has to be treated as compressible [6,15–17]. Ad-
ditionally, particle-based methods used for flow simulations are
compressible in nature, and theoretical calculations for the viscos-
ity give rise to density-dependent viscosity expressions [18] that
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can lead to changes in the velocity profile even in simple flow ge-
ometries [19–25]. The combination of slip and compressibility is
very important in microfluidic devices in microelectromechanical
systems (MEMS) [26,27].

Compressible flow models require an equation of state that re-
lates pressure to density. The ideal gas equation of state is fre-
quently used [20,23,21], or a more general linear form thereof
[22,24,25]. Density-dependent viscosity expressions can be found
in studies for groundwater flow [28], for polytropic gases [29], in
shallow water theory [30], in self-gravitating fluids [31] and in
particle-based methods such as Multiparticle Collision Dynamics
(MPC) [32,18]. Exact analytical solutions are difficult to attain in
these cases due to thehighnonlinearity of the flowequations, how-
ever some perturbation solutions have been presented in the liter-
ature. In [24], a perturbation solution for a weakly compressible
no-slip flow with compressibility number as perturbation param-
eter was solved to second order. A similar perturbation method
was used for an approximate analytical solution for flow through
an annulus [33], non-Newtonian flow [34,35] and Newtonian flow
with Navier-slip at the wall [22]. The only cases where an analyti-
cal solution was found was for incompressible flowwith pressure-
dependent viscosity and no-slip at the wall [36–38], as well as
for a viscoelastic fluid [39]. Finally, an asymptotic solution for
compressible no-slip flow with pressure-dependent viscosity was
considered in [40]. No publications have beenmade for a pressure-
dependent viscosity with Navier-slip at the wall that provide ana-
lytical expressions incorporating pressure–density effects.

In this paper, a perturbation solution is presented for the
case of compressible flow with Navier-slip at the wall subject
to a pressure-dependent viscosity and a linear equation of state.
The compressibility parameter arising from non-dimensionalizing
the equation of state is used as the perturbation parameter.
Although [40] considers a pressure-dependent viscosity, their
perturbation solution has two perturbation parameters: one from
the equation of state, the other from the pressure-dependent
viscosity. In our work, we have only one perturbation parameter
arising from the equation of state. Additionally, [40] uses the no-
slip boundary condition whereas we use the Navier-slip condition
instead, and we have a forcing term not used in [40]. Finally,
we did not impose conditions on the derivatives for the radial
velocity as imposed in [40] to determine the second-order radial
velocity solution. The motivation for adding a forcing term to the
system is due to the fact that some particle-based methods, in
particular multiparticle collision dynamics, can exhibit artifacts if
the flow is pressure-driven [41] whereas good agreement between
the theoretically-predicted velocity profile can be achievedwhen a
forcing term is used instead [42,43]. Furthermore, the theoretically
predicted viscosity for such models is density-dependent ([32,18],
Appendix C).

This paper is organized as follows: In Section 2 we present
the governing equations, the boundary conditions, and the non-
dimensionalized problem. The second-order perturbation solution
is derived in Section 3 with corresponding results presented in
Section 4. Important conclusions and future work are contained in
the last Section 5.

2. Governing equations

The governing equations of motion for a steady compressible
Newtonian fluid with variable viscosity are given by [44,45]

ρ (v · ∇)v = −∇P + ∇ · τ + F (1)
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where ρ is the density, v is the velocity vector, p is the pressure, F is
an external force, τ is the shear stress tensor, µ is the viscosity, ∇
is the gradient operator for the spatial coordinates x, y and z, and I
is the identity tensor. In this work, it is assumed that the coefficient
of bulk viscosity κ is negligible.

In cylindrical coordinates for flow with axial symmetry, and
v = (ur , uθ , uz) = (v(r, z), 0, u(r, z)), the θ-momentum equation
is satisfied identically and the remaining momentum and mass
conservation equations become
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In thiswork, a force in the z-direction is imposed. As such, the force
is in the flow direction and axisymmetry is maintained.

The conservation equations are coupled to a linear equation of
state

ρ = ρ0[1 + β(P − P0)] (10)

where β is the isothermal compressibility, and ρ0 the density at a
reference pressure P0, and to a linear density-dependent viscosity

µ = µ0


1 + A

ρ

ρ0


, (11)

where µ0 is a constant, and A a dimensionless scaling factor that
we will refer to as the viscosity–density parameter or viscosity
coefficient. Note that the reference viscosity is µ0(1 + A), and
that through Eq. (10), the viscosity in (11) is essentially pressure-
dependent. Also note that pressure-dependence in the viscosity
is controlled by both the viscosity–density parameter as well as
the isothermal compressibility. For flow through an impermeable
cylinder with Navier-slip at the wall, the following boundary
conditions are imposed:

−µ
∂u
∂r


r=R

= β̃ u|r=R (Navier slip at the wall) (12)

v|r=R = 0 (impermeable wall) (13)

∂u
∂r


r=0

= 0 = v|r=0 (axisymmetric flow) (14)

Q = 2π
 R

0
r (ρu)|z=L dr = Ṁ (15)

P|r=R,z=L = P0. (16)



Download English Version:

https://daneshyari.com/en/article/650173

Download Persian Version:

https://daneshyari.com/article/650173

Daneshyari.com

https://daneshyari.com/en/article/650173
https://daneshyari.com/article/650173
https://daneshyari.com

