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a b s t r a c t

In this paper we introduce a simplified variant of the well-known Taylor–Couette flow. The aim is to
develop and investigate a model problem which is as simple as possible while admitting a wide range
of behaviour, and which can be used for further study into stability, transition and ultimately control
of flow. As opposed to models based on ordinary differential equations, this model is fully specified by
a set of partial differential equations that describe the evolution of the three velocity components over
two spatial dimensions, in one meridian plane between the two counter-rotating coaxial cylinders. We
assume axisymmetric perturbations of the flow in a narrow gap limit of the governing equations and,
considering the evolution of the flow in a narrow strip of fluid between the two cylinders, we assume
periodic boundary conditions along the radial and axial directions, with special additional symmetry
constraints. In the paper, we present linear stability analysis of the first bifurcation, leading to the well
known Taylor vortices, and of the secondary bifurcation, which, depending on the type of symmetries
imposed on the solution, can lead to wave-like solutions travelling along the axial direction. In addition,
we show results of numerical simulations to highlight thewide range of flow structures that emerge, from
simple uni-directional flow to chaotic motion, even with the restriction placed on the flow.

© 2016 Published by Elsevier Masson SAS.

1. Introduction

The flow in the gap between two independently rotating coaxial
cylinders, the Taylor–Couette (TC) flow, has been the subject
of extensive research work from the early works of Taylor [1].
Because of its simple configuration, it has been a useful ground
for comparison between numerical, experimental and theoretical
studies, of which a detailed review is beyond the scope of this
paper. Because of the large parameter space, defined by the
rotation rates of the two cylinders, the ratio of the gap to the
span of the cylinder and the ratio of the radii, the TC flow
displays a rich phenomenology of flow regimes and bifurcations
leading to turbulence, Chossat and Iooss [2], as exemplified by the
experimental work of Andereck et al. [3] and the early studies of
Coles [4].

When a narrow gap limit of the governing equation is
considered, the equations become structurally similar to that of
the rotating plane Couette flow, which has also been subject of
extensive work, see for example the numerical investigations of
Bech and Anderson [5,6] and the more recent study of Tsukahara
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et al. [7]. The flow is governed by two nondimensional parameters
defining the shear rate and the rotation rate, [8]. For the plane
Couette flow with system rotation, the characteristics of the first
bifurcation of this system are well known, and the theoretical
stability predictions of the linearised equations are in very
good agreement with the experimental observation. The laminar
Couette flow establishing between the two rigid boundaries shows
a first supercritical bifurcation, that results in the formation of
azimuthal roll cells. For this case, it is well known, as discussed by
Lezius and Johnston [9], that the conditions for marginal stability
for the rotating systemhave a complete analogywith the buoyancy
driven instability in heated fluid layers. For larger values of the
governing parameter, the azimuthal toroidal vortices become
unstable to a class of non-axisymmetric time-dependent and time-
independent disturbances, [8,10,11]. Interestingly, some of these
three-dimensional nonlinear states survive to the limit of rotation
going to zero, i.e. plane Couette flow, [12,13]. These tertiary states
subsequently undergo a complex sequence of bifurcations, [14],
leading to a large variety of flow regimes [7].

The high-Reynolds number turbulent regime as been also ex-
tensively studied, for instance with the purpose of establishing
asymptotic scaling laws for the transport of angular momentum
[15–19]. At highReynolds numbers, two- aswell three-dimensional
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large scale organised flow structures still persist, showing hys-
teretic behaviour, [20], and are known to significantly affect the
turbulent transport of momentum across the gap, [21–25].

The main contribution of this paper is the discussion of a
particular reduced variant of the Taylor–Couette flow. The model
that we describe is derived from the original three-dimensional
problem by introducing a number of simplifying assumptions,
with the objective of making its mathematical analysis as simple
as possible. In fact, it should be regarded mainly as a test bed
for developing novel analysis methods for studies on stability,
transition, turbulence and chaos rather than as a realistic model
of the bifurcations and flow regimes of the full three-dimensional
problem. As opposed to other TC models based on a system of
ordinary differential equations, e.g. [26], the model we introduce
here is given by a set of partial differential equations that describe
the evolution of purely axisymmetric perturbations of the laminar
flow, in a narrow gap limit of the governing equations. The
main difference with earlier works, e.g. [27], is the adoption, for
the unique sake of further simplification, of periodic boundary
conditions along both the radial and axial directions, and the
addition of special symmetries to constrain the solution of
the problem. For instance, adoption of these peculiar boundary
conditions allows an analytical solution of the linear and energy
stability problems, whereas these require a numerical solution
in the more common case of no-slip boundary conditions. The
proposed TC-type flow variant adds to the class of simple flows
rich in features and flow regimes, which play a special role in fluid
dynamics, as for instance, the Kolmogorov flow, or the ABC flow.

Our motivation for developing and analysing this bare bone
version of the TC problem lies in our interest in developing novel
methods for stability and control of fluid flows, exploiting the
so-called sum-of-squares-of-polynomials optimisation and semi-
definite programming techniques (see [28] and reference therein
for an introduction to the topic). In particular, a novel approach
to nonlinear stability, i.e. stability to arbitrary finite amplitude
perturbations, extending the methodology recently proposed
in [29], has been applied on this system, [30]. The objective of this
paper is to discuss important characteristics of this system, and
in particular to present and discuss the unique flow regimes that
emerge in numerical simulations of the problem. Where possible,
connection between the presently-observed states and the original
three-dimensional flow will be made.

In Section 2 the model flow is derived and the numerical
approach developed to solve it is discussed. Section 3 contains
analytical results of the linear stability analysis of first bifurcation
that the flow model exhibits. In Section 4 we present numerical
results of nonlinear simulations of the flow with two different
sets of symmetry constraints that can be imposed on the solution,
discussed in Section 2. The objective of this section is to show
the characteristic flow features that the proposed flow model
exhibits and to discuss the differences with respect to the full
Taylor–Couette flow. In addition, the stability of the secondary flow
is also analysed.

2. Problem definition and numerical methods

A sketch of the flow geometry is given in Fig. 1, where the flow
between two cylinders of radii R1 and R2 is considered. We adopt
a thin gap approximation of the problem, such that the gap ∆R
is small compared to the cylinders radii. The two cylinders rotate
with angular speeds ω1 and ω2. The frame of reference, fixed in
space, is (ξ , r, θ), which are the axial, the radial and the azimuthal
coordinates, respectively.

In an effort to maximally simplify the resulting model of partial
differential equations, we do not consider the flow across the full
width of the gap, but we study the evolution of the flow only in a

Fig. 1. Schematic representation of the physical problem, with the coordinate
system adopted.

layer of small thickness δ ≪ ∆R lying in the middle of the gap, at
r = R1 + ∆R/2. We then introduce a rotating frame of reference
x = (x, y, z) centred in the mid-plane between the cylinders, as
illustrated in Fig. 1, which rotates around ξ with angular speed
ωR = (ω1 + ω2)/2, the angular speed of the layer of fluid in
the mid plane. In this frame of reference, x is the streamwise
direction, y is the radial direction,while z is the axial direction,with
opposite direction to ξ . As a result, a Coriolis force term appears
in the equations of motion together with a constant, centrifugal,
radial pressure gradient, which can be safely incorporated into the
pressure variable.

Under this frame of reference, the problem has a steady laminar
solution described by a linear profile, U = (by, 0, 0), where the
slope b is (ω2R2 − ω1R1)/∆R. The linear profile will be referred
to as the Couette flow. We consider the evolution of the velocity
perturbations u = (u, v, w) over this basic state.

Along the axial direction z we assume periodic boundary
conditions. Although extensive research has established that the
domain size might profoundly affect the behaviour of the solution,
the preferred wavelength of the roll-cell structures, and the
averaged fluxes of momentum/heat, we fix in this paper the
z-period to be equal to the thickness δ for the sake of simplicity.
On the inner and outer boundaries of the layer of thickness δ we
assume periodic boundary conditions for the velocity perturbation
vector u. This choice is motivated mainly by the technical reason
of constructing a model problem that is more amenable to
mathematical analysis, so that the resulting partial differential
equations can be used as a more flexible test bed for developing
new analysis methods, although the connection with the flow
physics of the three-dimensional problem is partially lost. For
instance, the linear and energy stability problems can be solved
analytically, whereas a numerical solution is required for the more
common case of no-slip conditions. This property was indeed
exploited in [28,30], where a novel method for nonlinear stability
analysis was developed and tested on the present flow model.

A further simplifying assumption is that we consider axisym-
metric perturbations, for which ∂/∂x = 0. As a result, be-
cause the perturbation is independent from x, the evolution of the
three-dimensional velocity vector u in a single two-dimensional
axial–radial plane (z − y) is studied. It is important to point out
that this assumption has a profound impact on the flow patterns
and nonlinear states that are observed in the present flow model,
some of which are significantly different from those observed in
three dimensional geometries. For example, some of the presently-
observed flow regimes are a unique feature of the model and
might be overwhelmed by other three dimensional states in a com-
plete configuration. In fact, bifurcations leading to tertiary three-
dimensional states, such as wavy vortex cells, [7], cannot arise in
the present model.

Among the different possibilities of normalising the problem,
we make velocities non-dimensional as u′

= u/dU = u/bδ,
where dU = bδ is the mean velocity difference between the inner
and outer boundaries of the layer of fluid considered. Lengths are
made non-dimensional using δ/2π , such that x′

= 2πx/δ, and the
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