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a b s t r a c t

A new class of resonant triad in the family of gravity–acoustic waves has been found. I show that a
hydro-acousticwave interactingwith a surface-gravitywavemay generate a secondhydro-acousticwave.
Interestingly, the two acoustic waves propagate in the same direction with similar wavelengths, that are
almost double of that of the gravity wave. The evolution of the wave triad amplitudes is periodic and it is
derived analytically, in terms of Jacobian elliptic functions and elliptic integrals. The physical importance of
this type of triad interactions is the modulation of pertinent hydro-acoustic signals, leading to inaccurate
signal perceptions.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Resonance interactions of waves play a prominent role in
energy share among the different wave types involved. Such
interactions may significantly contribute, among others, to the
evolution of the ocean energy spectrum by exchanging energy
between surface-gravity waves [1,2]; surface and internal gravity
waves [3–5]; or even surface and compression-type waves [6–8],
that can transfer energy from the upper ocean through the whole
water column reaching down to the seafloor [9–11].

A resonant triad occurs among a triplet ofwaves, usually involv-
ing interaction of nonlinear terms of second order perturbed equa-
tions. Until recently, it has been believed that in a homogeneous
fluid a resonant triad is possible only when tension forces are in-
cluded, or at the limit of a shallowwater [12]. Moreover, [9] argued
that when the compressibility of water is considered, no resonant
triads can occur within the family of gravity–acoustic waves. How-
ever, [7] proved that, under some circumstances, resonant triads
comprising two opposing surface-gravity waves of similar periods
(though not identical) and a much longer acoustic–gravity1 wave,
of almost double the frequency, exist.

In this paper I report on a new resonant triad involving a
surface-gravity wave and two hydro-acoustic waves of almost
double the length. Since the lengths of the gravity and acoustic

E-mail address: ukadri@mit.edu.
1 Acoustic–gravitywave is a very long hydro-acousticwave that is affected by the

force of gravity.

waves are comparable, the present resonance is relevant to hydro-
acoustic waves of relatively high frequency. This resonance is a
second of its kind in the family of gravity–acousticwaves, and it has
a significantly different characteristics compared to other resonant
triads. Here, even though the interaction of gravity and acoustic
modes does not concern short and long waves, the corresponding
frequencies are disparate.

2. Background

2.1. Governing equations

Consider a two dimensional Cartesian coordinate system (x, z)
with the origin in the undisturbed free surface, and the z-axis
vertically upwards. Let z = η be the equation of the free surface,
and z = −h the equation of the rigid flat bottom. Assume that the
density is a function of pressure alone, the viscosity is negligible,
and the velocity u is irrotational, so that u = ∇ϕ. Approximate to
quadratic terms, the equations of motion can then be integrated to
obtain the field equation [6]

ϕtt − c2∇2ϕ + gϕz = −2ϕxϕxt − 2ϕzϕzt (−h ≤ z ≤ 0), (1)

where c is the speed of sound in the fluid, g is the acceleration due
to gravity, and t is the time. The boundary condition at the bottom
is

ϕz = 0 (z = −h). (2)

From the continuity equation we know that Dρ/Dt − ρ∇
2ϕ =

0, where (D/Dt) is the differentiation following motion, and ρ
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is the fluid density. Since the flow is barotropic and a particle
at the free surface forever remains there, where the pressure
is atmospheric, the kinematic boundary condition is reduced to
∇

2ϕ = 0 (e.g. see [6]). On the other hand, the dynamic free surface
boundary condition,ϕt+(ϕ2

x +ϕ2
z )/2+gη = 0, is obtained from the

equation of motion. Expanding the kinematic condition in a Taylor
series around z = 0 andmaking use of the dynamic conditions, [7]
obtained the combined condition at the free surface

g∇2ϕ = ϕtϕxxz + ϕtϕzzz (z = 0). (3)

An alternative formulation of the free surface boundary condi-
tion can be obtained after some simplemanipulation of Eqs. (1) and
(3) (see [7])

ϕtt + gϕz = −2ϕxϕxt − 2ϕzϕzt + g−1ϕtϕttz + ϕtϕzz (z = 0), (4)

where, to quadratic order, (1) together with (3), are equivalent to
(1) with (4).

2.2. Linear solution

Neglecting nonlinear terms in (1) and (3), and for practical
purposes neglecting the gravity term in (1) and seeking a
progressive-wave solution with frequency ω, the linear solution is
obtained [13]

ϕ =
giA
2ω

cosh [µ (h + z)]
cosh(µh)

ei(kx−ωt)
+ c.c., (5)

where c.c. denotes complex conjugates, k2 = µ2
+ ω2/c2, and the

dispersion relation is given by

ω2
= gµ tanh(µh). (6)

The leading root in the dispersion relation (6) is real with a
corresponding real wavenumber resembling the surface-gravity
mode. On the other hand, the remaining infinity of roots are
all imaginary. At any prescribed frequency ω, and water depth
h > hcr ≡ πc/2ω there is at least one propagation mode, with
imaginary root but real wavenumber. Such modes are referred
to as hydro-acoustic. All remaining modes having imaginary
wavenumbers and are known as evanescent modes. Thus, for the
acoustic modes, provided that λ = iµ is real, we can exclusively
write

ω2
= −gλ tan(λh) (7)

and

k2 =
ω2

c2
− λ2 > 0. (8)

Note that for a gravity wave of frequencyω = σ , travelling in deep
water, µ ≃ k, the dispersion relation reduces to

σ 2
= gk. (9)

3. Resonant triads

Concerning a triad involving two acoustic modes of frequencies
ω1 and ω2, and wavenumbers q1 and q2, and a single gravity mode
of frequency σ and wavenumber k, we are seeking to satisfy the
resonance conditions

σ = ω1 − ω2, k = q1 + q2, (10)

and the dispersion relations (7) and (9) for the acoustic and gravity
modes, respectively. From the gravity mode dispersion relation (9)
we can combine the resonance conditions,

(ω1 − ω2)
2

= g (q1 + q2) . (11)

On the other hand, for the hydro-acousticwaves it is known that
λh = π/2+∆, for the firstmode,where∆ ≪ 1. Upon substitution
in (7), the dispersion relation of the first acoustic mode reduces to

ω2
=

gλ
λh − π/2

, (12)

to leading order in ∆. Isolating λ and substituting in (8) and (11)
we obtain a relation between ω1 and ω2,

(ω1 − ω2)
2

= g

ω2
1

c2
−

ω4
1π

2/4
ω2

1h − g
2

+

ω2
2

c2
−

ω4
2π

2/4
ω2

2h − g
2

 . (13)

By requiring wavenumbers to be real, it is easy to show that
the acoustic cut-off frequency is ωcr ≃ πc/2h, which corresponds
to a Longuet-Higgins resonance (see [8,6]). For any ω2 > ωcr one
can always find ω1, from (13), and σ , from (11), that satisfy the
dispersion relations and resonance conditions.

4. Amplitude evolution equations

For the resonant triad case, we assume that the complex
amplitudes of the gravity mode S(τ ), and the two acoustic modes
A1(τ ), and A2(τ ), are all slow variables in time τ . The first order
velocity potential of the triad is given by

φ(1)
= S(τ )ekzei(kx−σ t)

+ A1(τ ) cos[λ1(z + h)]e−i(q1x+ω1t)

+ A2(τ ) cos[λ2(z + h)]ei[(k−q1)x−(σ+ω1)t] + c.c. (14)

The governing equations for the secondorder potential are the field
equation

φ
(2)
tt − c2∇2φ(2)

+ gφ(2)
z = −2φ(1)

τ t − 2φ(1)
x φ

(1)
xt − 2φ(1)

z φ
(1)
zt

(−h < z < 0), (15)

the bottom boundary condition

φ(2)
z = 0 (z = −h), (16)

and the combined surface condition

φ
(2)
tt + gφ(2)

z = −2φ(1)
τ t − 2φ(1)

x φ
(1)
xt + 2g−1φ

(1)
tt φ

(1)
zt

+ 2g−1φ
(1)
ttt φ(1)

z − g−2φ
(1)
ttttφ

(1)
t (z = 0). (17)

We define the second order potential with amplitudes changing
slowly in time

φ(2)
= FS(z, τ )ei(kx−σ t)

+ FA1(z, τ )e−i(q1x+ω1t)

+ FA2(z, τ )ei[(k−q1)x−(σ+ω1)t] + c.c. (18)

4.1. Derivation of the evolution equations

Substituting (18) in the field equation, we write for the gravity
wave

FS,zz − k2FS = −
2iσ
c2

ekzSτ +
iσ
c2


−q21 − λ1λ2 + q1k


× cos [(λ1 − λ2) (z + h)] +


−q21 + λ1λ2 + q1k


× cos [(λ1 + λ2) (z + h)]


A∗

1A2. (19)
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