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a b s t r a c t

The electro-osmotic fully-developed flow in a circular micro-channel is studied under an alternating
electrical field. An analytical approach based on the linearized Poisson–Boltzmann equation is selected
to get an exact solution of the electrical potential inside the channel. An exact solution of the velocity
distribution is then obtained by using the Green’s function approach. The application of the electrical
body force results in a rapid acceleration of the fluid within the double layer. If the diffusion time scale
is much greater than the oscillation period (high frequency), the fluid within the double layer oscillates
rapidly, while the bulk fluid remains almost stationary.

© 2012 Elsevier Masson SAS. All rights reserved.

1. Introduction

In recent years, considerable progress has beenmade in the field
of miniaturization. It is now effectively possible to miniaturize all
kinds of systems—e.g., mechanical fluidic, electromechanical, or
thermal-down to sub-micrometric sizes. In particular, the micro-
fluidic systems have been developed in which a fluid circulates
inside a miniaturized channel, named micro-channel, by applying
an electrical field along it. The rapid expansion of themicro-fluidics
field seems to be driven in part by the possibility of integration.
The domain of integrated analysis systems has been designated
as micro-total analysis systems, or also lab-on-a-chip systems.
Generally, a lab-on-a-chip device has a network ofmicro-channels,
electrodes, sensors and electrical circuits. The advantages of these
labs on a chip include dramatically reduced sample size, much
shorter reaction and analysis time, high throughput, automation
and portability [1]. The electro-osmotic flow is usually preferred
over the pressure-driven flow, because pumping a liquid through a
very small channel requires applying very large pressure difference
depending on the flow rate. Additionally, it does not require any
external pump, but needs electrodes to control the flow field.

Among the researchers that worked on these phenomena,
Anderson [2] studied the particle movement produced by non-
uniform zeta potential in an electric field. The effect of inhomo-
geneously charged surfaces on electro-osmosis was reported by
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Ajdari [3]. Wang and Chen [4] investigated electro-osmosis in ho-
mogeneously charged micro- and nanoscale random porous me-
dia usingmesoscopic simulationmethods which involve a random
generation-growth method for reproducing three-dimensional
random micro-structures of porous media and a lattice Poisson–
Boltzmann algorithm for solving the strongly nonlinear govern-
ing equations. Wang et al. [5] modeled physicochemical transport
due to electro-osmosis of dilute electrolyte solutions through
micro-porous media with granular random microstructures by a
three-step numerical framework. They investigated the effects of
porosity, ionic concentration, pH, and temperature on the electro-
osmotic permeability through the granular micro-porous media.

Among the researchers that worked on DC electro-osmotic
flows, Dutta andBeskok [6] presented analytical results for velocity
distribution, mass flow rate, pressure gradient, wall shear stress,
and vorticity in mixed electro-osmotic/pressure driven flows for
two-dimensional straight channel geometry. Arulanandam and
Li [7] studied the liquid movement in a rectangular micro-channel
by electro-osmotic pumping. Soong andWang [8] studied flow and
heat transfer between two parallel plates.

AC electro-osmotic flows have been studied by some re-
searchers. Among them, Kang et al. [9] solved the electro-osmotic
flow problem in a cylindrical channel for only sinusoidal waveform
by the Green’s function method. Wang and Kang [10] presented a
numerical solution based on coupled lattice Boltzmann methods
for electro-kinetic flows in micro-channels. They also presented
an analytical flow field model, based on a surface slip condition
approach, for an axially applied AC electrical field in an infinitely
widemicro-channel. Comprehensivemodels for such a slit channel
have also been presented by Dutta and Beskok [11] who developed
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an analytical model for an applied sinusoidal electric field, and
Soderman and Jonsson [12] who examined the transient flow field
caused by a series of different pulse designs. Erickson and Li [13]
presented a combined theoretical and numerical approach to in-
vestigate the time periodic electro-osmotic flow in a rectangular
micro-channel.

As an alternative to traditional DC electro-osmosis, a series of
novel techniques have been developed to generate bulk flow using
AC fields. For example, Green et al. [14] experimentally observed
peak flow velocities on the order of hundreds of micrometers per
second near a set of parallel electrodes subject to two AC fields,
180° out-of-phase with each other. The effect was subsequently
modeled using a linear double layer analysis by Gonzalez et al. [15].
Using a similar principle, both Brown et al. [16] and Studer
et al. [17] presented micro-fluidic devices that incorporated arrays
of non-uniformly sized embedded electrodes which, when subject
to an AC field, were able to generate a bulk fluid motion.

In this research, an exact solution of flow induced by unsteady
applied electric fields inside a circular micro-channel has been
developed. The closed-form solution of the momentum equation
presented within the Debye–Huckel approximation can be used to
get the velocity profiles due to applying any time-periodic electric
fields. This kind of micro-channel with its particular applied
electric field has its unique features and applications. Lab-on-a-
chip devices having networks of micro-channels are miniaturized
bio-medical or chemistry laboratories on a small glass or plastic
chip. Applying electrical fields along micro-channels controls the
liquid flow and other operations in the chip. These labs on
a chip can duplicate the specialized functions as their room-
sized counterparts, such as clinical diagnostics, DNA scanning and
electro-phoretic separation.

2. Problem formulation

Consider a fully-developed flow inside a circularmicro-channel
that is produced by an electric field in the absence of any pressure
gradients.

First of all, we must know the local net charge density per unit
volume ρe at any point in the solution. This requires solving the
EDL field [18]:

∇
2ψ =

2Zen0

ε
sinh


Zeψ
kBT


(1)

where, ψ is the electrical potential.
For pure electro-osmotic fully-developed flows of incompress-

ible fluids in circular micro-channels, the Navier–Stokes equations
take the following form [19]:

ρ
∂Vz
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
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∂r2
+
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∂Vz
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
− ρeE (ω t) (2)

where, Vz is the only non-zero velocity component along the
channel, ρ and µ are the density and the viscosity of liquid,
respectively, and E (ω t) is a general time-periodic function with
a frequency ω = 2π f that describes the applied electric field
strength.

Eqs. (1) and (2) are the governing equations of this problem. The
boundary conditions are:r = 0 :

dψ
dr

= 0

r = ℜ : ψ = ζ

(3)

r = 0 :
∂Vz

∂r
= 0

r = ℜ : Vz = 0
(4)

where, ℜ and ζ are the channel radius and the zeta potential,
respectively.

Consider the following dimensionless variables:
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ℜ
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ρℜ2
t,
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µ
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in which, Ez is a constant equivalent to the strength of the applied
electric field. Introducing the above dimensionless variables into
Eqs. (1) and (2) gives the following non-dimensional forms of the
governing equations:

∇
2Ψ = (κℜ)2 sinhΨ (6)
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=
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∂R2

+
1
R
∂V
∂R

+ (κℜ)2 sinhΨ F (Ωθ) (7)

where, F (Ωθ) is a general periodic function of unit magnitude
such that E (Ωθ) = EzF (Ωθ). κ is the Debye–Huckel parameter
defined as follows:

κ =


2Z2e2n∞

εε0kBT

1/2

. (8)

The boundary conditions (3) and (4) also take the following
dimensionless form:R = 0 :

dΨ
dR

= 0

R = 1 : Ψ = Z
(9)

R = 0 :
∂V
∂R

= 0

R = 1 : V = 0.
(10)

Eq. (6), under the condition that the double layer potential
Ψ is small, can be linearized by the so-called Debye–Huckel
approximation, yielding:

d2Ψ
dR2

+
1
R
dΨ
dR

= K 2Ψ (11)

in which, the constant K has been introduced to denote κℜ
(electro-kinetic radius). The solution of (11) subject to the
boundary conditions (9) is:

Ψ (R) =
Z

I0(K)
I0 (KR) (12)

where, Iν(x) is the modified Bessel function of the first kind and
order ν, satisfying the following modified Bessel function:

x2y′′
+ xy′

−

x2 + v2


y = 0. (13)

In order to solve Eq. (7), the Debye–Huckel approximation is
implemented to result in the following form of the equation:
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. (14)

A Green’s function approach is now used to find an analytical
solution for the non-dimensional form of the motion Eq. (14). The
Green’s function and the boundary conditions become [20]:
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lim
R→0

|g (R, θ; ℓ, τ ) | < ∞

g (1, θ; ℓ, τ ) = 0


, 0 < R, ℓ < 1, 0 < θ, τ (16)
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