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A B S T R A C T

With the developments in computational techniques, detailed simulations of flow thermomechanics and
other phenomena in complex geometries, such as granular or porous media, are attracting increasing inter-
est. Recently, the lattice Boltzmann method (LBM) is more and more often applied for such computations.
In this work, we present a novel numerical scheme of shift-periodic boundary conditions for the internal
energy distribution function in thermal LBM. As validation cases, we consider flow past an array of heated
obstacles in regular and random arrangements, akin to the granular media geometry. The quality of the
proposed shift-periodic scheme is documented and the LBM results are presented for temperature profiles.
The developments proposed here are also of interest for volume-averaged modeling of porous media heat
transfer.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, there is a growing interest in detailed or multiscale
simulations of geometrically-complex flow systems, including the
account of coupled phenomena. The analysis at different scales has
become possible thanks to advances in computer power and devel-
opments of new computational methods. Physically-complex porous
media flows with heat transfer and possibly with chemical reac-
tions make a particular example of such flows. They are present in a
number of technological processes (the power generation systems)
and devices (the chemical and process engineering applications).
In numerical computations, the porous medium is often dealt with
as a representative element of volume (REV) to simulate various
phenomena at the level of a single pore. The physico-chemical and
geometrical complexities imply that more traditional methods of
computational fluid dynamics (CFD) reveal to be expensive as far
as detailed modeling is concerned. Therefore, our longer-term idea
is to develop a multiscale approach with microscopic, or single-
pore level, 3D/2D computations in the REV domain, followed by a
macroscopic, physically-sound analysis of the process in terms of an
averaged (1D/2D), unsteady model. In general, multiscale modeling
offers fascinating perspectives in fluid dynamics; however, it is a

� Communicated by W.J. Minkowycz.
* Corresponding author.

E-mail addresses: agrucelski@imp.gda.pl (A. Grucelski), jp@imp.gda.pl
(J. Pozorski).

demanding approach in terms of model developments. One needs to
provide a detailed description of geometry (at the REV level and also
at level below) and numerical tools, including relevant schemes of
physically sound inlet/outlet boundary conditions.

One of the numerical tools (operating at the meso-scale level)
that has recently gained considerable attention of the scientific
and industrial communities is the lattice Boltzmann method (LBM).
The method has proven suitable for simulation of viscous and
nearly incompressible flows as well as convective heat transfer
in simple and complex geometries; see [1] for a comprehensive
introduction. The LBM has already attracted interest as an alter-
native tool of computational fluid dynamics, more and more used
for modeling fluid–structure interactions [2, 3], chemical reactions
and species transport, non-Newtonian flows [4], turbulence [5, 6],
etc. Coupled LBM approaches are also reported; in [7] authors
couple LB with discrete ordinates method for solving conduction
and radiation heat transport problem. Li et al. in [8] couple LB
with finite-volume method for modeling of the convective melting
process.

As a first development step towards the physically-sound
description of the coking process, the authors applied the LBM to
simulate fluid flow past a cylinder and in simple granular (or porous)
media [9]. In the second step, we have dealt with non-isothermal
flows in a simple and complex geometry [10]. The present work
addresses the problem of formulation and implementation of shift-
periodic thermal conditions at the inlet and outlet boundaries of
the REV domain (the bed of grains, like the coal grains during the
coking process). In the case of fluid flow, the LBM formulation of
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shift-periodic condition for velocity in pressure-driven flow was first
proposed and verified by Zhang and Kwok [11]. Their original pro-
posal was subject to subsequent modifications; for example, Kim and
Pitsch [12] have proposed a higher-accuracy, generalized formula
applicable for fluid flows without constraints on velocity, otherwise
typical of LBM applications. A few years later, Gräser and Grimm [13]
proposed an extended scheme, accounting for adaptivity. This for-
mulation guarantees that the scheme can also be used for complex
cases where geometry of the single unit cell is not symmetric.
There, the pressure gradient perpendicular to the main flow direction
(occurring, e.g., through a lack of symmetry, also with respect to the
momentum), is adjusted by a controller loop. Regarding heat transfer
simulations in LBM, to the best knowledge of the authors, a scheme
for periodic condition with a temperature difference between the
inlet and the outlet is proposed here for the first time.

The shift-periodic condition is understood here as a practical
concept for periodic geometries where the difference of a relevant
variable (such as the pressure or temperature) between inlet and
outlet drives the flow or results from heat transfer. In case of fluid
flow, the pressure gradient is usually applied, whereas for heat
transfer it is sometimes desirable to introduce the inlet/outlet tem-
perature difference. Generally, the possibility to use the proposed
scheme and shift-periodic boundary condition is of practical interest.
In case of fluid flow, a number of results are known from the litera-
ture where the pressure drop in a given geometry can be calculated
from empirical correlations. A well-known example is the Darcy law
with permeability determined by, e.g., the Carman–Kozeny corre-
lation. As far as heat transfer is concerned, some situations where
the shift-periodic boundary condition is needed are presented in
Fig. 1. The fluid flow is driven by the imposed pressure drop. As
the first case, we consider distributed heat sources in the domain,
in the form of the hot/cold obstacles (plot a). Alternatively, a non-
zero heat flux at the side boundaries may be considered (plot b).
In description of these cases, one has to consider an overall tem-
perature difference between inlet and outlet. We treat obstacles
in the domain as heat sources (see Fig. 1a) and, for the sake of
simplicity, we assume periodic boundary conditions in the cross-
stream direction. Such a configuration with a regular arrangement
of obstacles was used as the validation test case by Kuwahara et
al. [14]. There, obstacles were treated as heat sources with the
same temperature, different than that of the inlet flow. We address
this case in detail in Sec. 3.1. This geometry was next used by
other authors (see [10, 15]) for comparison and validation pur-
poses; also correlations for the Nusselt number were proposed
there.

2. Numerical modeling

2.1. Lattice Boltzmann method

In the present work we use the lattice Boltzmann method,
with the fluid density and velocity solved in terms of the density

distribution function (denoted by f) as presented in [16]. In addition,
the temperature field is found from the internal energy density dis-
tribution function (IEDDF, denoted by g), see [17–19]. The form of all
LB equations used here is similar; for advection of both f and g, we
use the discretization schemes D2Q9 for 2D and D3Q19 for 3D; sym-
bolically, f(x, t, e) → fi(x, t). The resulting evolution equations (with
the BGK simplification, see [1]) are

fi(x + eidt, t + dt) = fi(x, t) + dt( f eq
i − fi)t

−1
m (1)

gi(x + eidt, t + dt) = gi(x, t) + dt(geq
i − gi)t−1

a

where ei are discrete velocity directions for advection of the distri-
bution functions on the lattice. Here, f eq

i and geq
i are the equilibrium

distributions:
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where the IEDDF coefficients at, bt, ct, dt are not constant and depend
on the discretization model and the advection direction i (see [18]).
Yi are the weight coefficients; h and q are the temperature and den-
sity, respectively, at a given node. The relaxation parameters tm and
ta for f and g distributions, respectively, are functions of crucial phys-
ical properties: viscosity m and heat transfer coefficients a (of solid
and fluid). The macroscopic flow density q, velocity u and temper-
ature h at each lattice node are found from suitable averaging [1]:

q =
∑

i

fi, u = q−1
∑

i

ei fi, h = q−1
∑

i

gi.

2.2. Boundary schemes

At the solid/fluid interface, we use the boundary conditions for
fluid flow and heat transfer translated in the LBM variables. They are
the no-slip condition for velocity and a known temperature assumed
at the surface of heated obstacles (see Fig. 1a). Alternatively, the tem-
perature field of obstacles can also be modeled by LBM (details are
given in Sec. 3). For modeling purposes we use the standard bounce-
back scheme for flow velocity at the solid–fluid interface [1]; for heat
transfer we use the boundary scheme presented by He et al. [17].

At the side boundaries of computational domain, parallel to
the flow direction, we use the standard periodic condition. In the
scheme, all distribution functions with the advection vector pointing
outside (leaving the domain) are copied to the opposite boundary. At
the cross-stream boundaries, perpendicular to the main flow direc-
tion, we use the shift-periodic boundary conditions for f (where the
pressure drop between inlet and outlet is calculated from the Darcy

Fig. 1. Examples of simulation cases where shift-periodic type boundary condition is needed.
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