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This work presents a theoretical approach, based on momentum and energy or Reynolds analogy, to investigate
forced convection in microducts of arbitrary cross-section. H1 boundary condition is assumed for gas flow in the
slip-flow regime with further complication of a temperature jump condition assumption. It is shown that apply-
ing an analogy concept, one can relate the slip-flow results to those of no-slip/no-jump ones available in the lit-
erature. Present results for slip flow in microchannels of parallel plate, circular, triangular, trapezoidal, polygonal,
rhombic, and rectangular cross-sections are found to be in close agreement with those in the literature. A further

modification, based on Chilton-Colburn analogy is applied to enable the Prandtl number variation effects when
the Prandtl number is not equal to unity.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Microscale heat and fluid flow is of great importance not only for
playing a key part in the biological systems, but also for its application
in cooling electronic equipment, see [1-3]. Such small devices, however,
show different behaviors compared to their macroscale counterparts in
being associated with the inclusion of slip velocity and temperature
jump, as noted by Tunc and Bayazitoglu [4], and also Sparrow and
Haji-Sheikh's [5] pioneering work on velocity slip. One notes that gas-
eous flows at such small passage cannot be accurately predicted using
classical continuum physics since such flow is associated with a nonzero
fluid velocity at the solid walls where a difference between the gas-wall
temperature prevails when 0.001 < Kn < 0.1, e.g,, slip flow behavior for
which the Navier-Stokes and thermal energy equations should be com-
bined with the slip flow condition and wall temperature jump so that
the results can match experimental measurements, see [6-10].

This paper uses the analogy between momentum and thermal ener-
gy equation to relate the heat transfer to pressure drop for such slip
flow. Furthermore, these slip flow results can be related to no-slip
flow data for which theoretical results are available in the literature
for a number of boundary conditions. Here, the H1 case, in the
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terminology of Shah and London [11], which permits heat transfer-
pressure drop analogy, is of interest. The H1 boundary condition as-
sumes a constant (independent of x) longitudinal heat flux while in
each cross-section the wall temperature is constant independent of
transverse and spanwise directions. Forced convection through
microducts of arbitrary cross-sections is considered. According to
Morini [12], four technologies exist to build microchannels each of
which lead to different geometries for a micro-flow device. For instance,
chemical etching directly on the silicon wafer, leaves cross-sectional
shape to depend on a number of factors including the crystallographic
nature of the silicon.

As such, this paper proposes a shorthand way of calculating slip flow
forced convection from the already existing no-slip solutions. Applica-
tion of this methodology to microchannels of parallel plate, circular, el-
liptical, rhombic, and rectangular cross-sectional shape is verified by
comparing the results with those available in the literature. Further-
more, novel results pertaining to microchannels of hexagonal cross-
sectional shape are reported following the application of the proposed
heat and momentum transfer analogy. Effects of Prantdl number varia-
tion on heat transfer for microducts of semicircular and triangular cross-
section are also investigated.

2. Analysis

Consider gas flow in a straight microconduit of arbitrary but axially-
uniform cross-section as shown in Fig. 1. It is assumed that steady fully
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Fig. 1. Schematic view of the microduct with arbitrary cross-sectional shape. Flow
direction (along x), microduct contour (C), and cross-sectional area A are shown.

X, U

developed unidirectional flow of a rarefied gas in the longitudinal (x) di-
rection. The gas properties are assumed to be constant. Slip flow and
temperature jump at the wall are also assumed to hold.

The slip velocity can be found as
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where u is the slip velocity, F is the tangential momentum accommoda-
tion coefficient, n denotes the coordinate which is normal to the wall,
and A is the molecular mean free path. On the other hand, the fluid tem-
perature at the wall, T;, can be in a different form that of the wall, T, i.e.,
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Here, F; is the thermal accommodation coefficient, Pr is the Prandtl
number, and v is the specific heat ratio. The fully developed momentum
equation, to be solved subject to the slip flow condition, Eq. (1), is given
by
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This can be integrated to give
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where ptis the gas viscosity, the average velocity is U, C is the duct pe-
riphery as depicted in Fig. 1, and u is the dimensionless velocity.

Assuming constant fluid properties, the fully developed thermal en-
ergy equation reads
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where, following the application of the first law of thermodynamics to
an element, the longitudinal temperature gradient takes this form
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with Dy = 4A/C being the hydraulic diameter and g” the wall heat flux
where p, k and c,, are the gas density, thermal conductivity and specific
heat at constant pressure, respectively.

Now the thermal energy equation can be rearranged to read
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Integrating over the fluid volume (V = CDyL/4), with L being the
duct length, one has
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Using the dimensionless temperature and with
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one has

4Ch

ML (10)

wherein 0 = (T — Ty,)/(T, — T,y) is the dimensionless temperature.
Note the analogy between Eqgs. (10) and (4). As such, one concludes
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which, following the application of the Fanning friction factor f, one
has
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leading to
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with Po, being the Poiseuille number defined as Po = fRe. Note that in
all dimensionless numbers, the hydraulic diameter was selected as the
length scale. One notes that Eq. (13) is pertinent to a case where Nu
and Po are obtained from velocity and temperature fields which are af-
fected by slip velocity and temperature jump.

The above equation allows for prediction of heat transfer based on
pressure drop for slip flow through a micro-duct of arbitrary but
uniform cross-section. For instance, results of Hooman [13] or those
of Morini et al. [6] for the friction factor can be used to give Nusselt
number without the need to solve the extra (thermal energy) equation.
Alternatively, one can use the well-known Reynolds analogy for no-slip
flow
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as a base case and relate the slip flow data to those of no-slip as
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Note that, one can either use the friction factor for slip flow as given
by Morini et al. [6] to get the Nusselt number or get the Nu/fRe (good-
ness factor) values given by Shah and London [11] along with the fRe
values in the literature, say those of Tamayol and Hooman [14] for
ducts of arbitrary cross-section.

3. Results and discussion

Application of Eq. (15) above to different duct geometries will con-
stitute a database for heat transfer of micro-ducts with arbitrary cross-
sectional area. In an interesting study, Renksizbulut et al. [7] have re-
ported numerical predictions for slip-flow forced convection through
ducts of trapezoidal cross-section with rectangular ducts as limiting
cases. More interestingly, their results are presented in the form of cor-
relations which are cross-validated against those in the literature, e.g.,
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