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A B S T R A C T

In order to compress and reconstruct the plant spectral data effectively, greedy compressive sensing methods are
introduced to improve the storage and transmission efficiency of data while maintaining interpretation capacity
of spectral information for physiological and biochemical parameters of plant. The key physiological and bio-
chemical parameters such as water content, carotenoid content and chlorophyll content were chosen to test the
retrieving efficacy of the greedy compressive sensing algorithms of MP, ROMP, OMP, StOMP and CoSaMP at
different sampling rates. The performances of all algorithms are thoroughly evaluated on three different levels:
the spectral level, the feature level and the model level. The experimental results show that the errors of these
three levels of all methods are regularly changed with the sampling rate. For the spectral level, the error of
spectral reconstruction of all algorithms stabilized within 2% when the sampling rate is higher than 0.15bpp. For
the feature level, the spectral indices of all algorithms exhibited a decreasing trend with the increase of the
sampling rate. When the sampling rate is higher than 0.2bpp, the errors of the reconstructed spectral indices of
all methods are lower than 2%. For the model level, the reconstructed normalized root mean square error of
chlorophyll and carotenoids of all methods are reduced to 8% and 12% respectively at the sampling rate of
0.25bpp. For the error of water content, the reconstruction errors of MP and ROMP are about 24% and those of
OMP, StOMP and CoSaMP were lower than 15% at the sampling rate of 0.4bpp. Therefore, these greedy com-
pressive sensing algorithms not only reduce the data volume of plant spectra significantly, but also maintain
plant critical spectral characteristics.

1. Introduction

Currently, Remote sensing technology plays an important role in
agricultural resource survey, agricultural resource monitoring, biomass
estimation and agricultural disaster prediction (Lu, 1998). In various
forms of remote sensing data, given the hyperspectral technology can
obtain spectral information on the continuous wavelength, it can pro-
vide abundant information which facilitate the spectral analysis and
information extraction (Tang and Huang, 2001). This advantage en-
ables the hyperspectral technology presenting great potential in plant
physiological and biochemical parameters inversion (Ruan and Niu,
2004), stress detection (Zhang et al., 2011), etc.

With the rapid development of vegetation hyperspectral technology,
the massive data in the process of acquisition, transmission and analysis
also challenge the traditional data acquisition and compression tech-
nology (Zhang et al., 2014). (Candès et al., 2006; Donoho, 2006; Candes
and Tao, 2007) proposed a new data acquisition and processing theory
namely compressive sensing (CS). CS samples data at far below the

Nyquist sampling rate by constructing an uncorrelated observation
matrix, and the original data is reconstructed by a reconstruction al-
gorithm. Due to its great advantage in data processing, it has aroused
the concern of related fields including wireless sensor network (WSN)
and Internet of Things (IoT) since its development (Liu et al., 2015; Liu
and Wang, 2017; Zheng et al., 2015, 2017).

The reconstruction algorithm of CS can be divided into three cate-
gories: convex optimization algorithm, greedy algorithm and combi-
natorial algorithm. Convex optimization algorithm can achieve high
reconstruction precision with high computation complexity.
Combinatorial optimization algorithm uses the structured method to
sample the original signals with high speed, but its computation com-
plexity is very high and the sampling matrix is too complicated to be
used in real acquisition system. Greedy algorithm can not only re-
construct signals with high fidelity, but also its calculation speed is
significantly higher than that of the others. Therefore, greedy algorithm
has greater potential to be used in the massive plant hyperspectral data.
The current greedy reconstruction algorithm mainly includes Matching
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Pursuit (MP) (Mallat and Zhang, 1993), Orthogonal Match Pursuit
(OMP) (Tropp and Gilbert, 2007), Stagewise Orthogonal Matching
Pursuit (StOMP) (Donoho et al., 2006), Regularized Orthogonal
Matching Pursuit (ROMP) (Needell and Vershynin, 2010) and Com-
pressive Sampling Orthogonal Matching Pursuit (CoSOMP) (Needell
and Tropp, 2008), etc.

To preserve the image texture, edge and other information, sparse
representation is constructed by different sparse basis to improve the
reconstruction accuracy (Lian and Chen, 2010). For hyperspectral data
with the characteristics of its unification of map and high spectral-
spatial correlation, Duarte proposed the Kronecker product matrices as
a sparse basis (Duarte and Baraniuk, 2012). Coluccia improved the
reconstruction accuracy according to inter-spectral correlation
(Coluccia et al., 2013). Ly proposed random projection reconstruction
of hyperspectral imagery with spectral and spatial partitioning (Ly
et al., 2013). Chen proposed a sparse representation for target detection
in hyperspectral imagery (Chen et al., 2011). Eason raised a total var-
iation regularization via continuation to recover compressed hyper-
spectral images (Eason and Andrews, 2015). High-resolution compu-
tational spectral imaging of remote sensing based on coded sensing had
been used (Shi et al., 2011). A pixel-based distributed compression
sensing that rely on the endmember and abundance of hyperspectral
data has been developed (Wang et al., 2015).

It should be noted that compressive sensing technology is often
closely related to a specific field and application characteristics. In the
application of vegetation, a common and important task is to use hy-
perspectral data to invert plant physiological and biochemical para-
meters, that is, to establish the spectral inversion model of plant phy-
siological and biochemical parameters (Wang, 2008). These studies
usually consider vegetation index as a characteristic variable in addi-
tion to the spectral reflectance (Liang et al., 2010). The leaf-based
pigment index was used to invert the contents of chlorophyll and car-
otenoid to obtain better performance than the normalized ratio pigment
index (Wang et al., 2009). Li found that the ratio of spectral reflectance
at 1600 nm and 820 nm can eliminate the influence of external factors
such as environmental background and canopy structure in the inver-
sion of vegetation water content, improve the inversion accuracy, and
reflect the temporal and spatial changes of water content of vegetation
(Li et al., 2009). Yang adopted the radiative transfer model and the
neural network method to invert the plant leaf area index (Yang et al.,
2011).

To sum up, the application of hyperspectral remote sensing of ve-
getation is mainly focused on the spectral analysis. However, the ex-
isting compressive sensing methods are mainly for spatial analysis
whereas the spectral analysis is less involved. Therefore, in order to
premote the research and application of quantitative remote sensing of
vegetation, there is an urgent need to extend the compressive sensing
technology to the spectral domain, and establish compressive sensing
reconstruction methods which can maintain the key characteristics of
vegetation spectrum. Moreover, the reconstruction effect of the original
spectral signals and inversion models of vegetation physiological and
biochemical parameters of the compressive sensing technology should
be evaluated.

This study aims to solve the above mentioned issues. Firstly, in-
version models of the calculated spectral index and the original vege-
tation physiological and biochemical parameters were obtained using
the partial least squares regression (PLSR) method in this study.
Secondly, the spectral reflectance of the plants were sampled and re-
constructed by five kinds of greedy reconstructed algorithms at dif-
ferent sampling rate. Finally, the reconstructed spectral data were
analyzed at the spectral level, the feature level and the model level.

2. Materials and methods

2.1. Data description

In this study, the experimental data were obtained by radiative
transfer model of leaf. The PROSPECT model (Jacquemoud and Baret,
1990) is the most widely used leaf reflectance simulation model in the
world. The leaf reflectance is simulated according to the leaf physio-
logical and biochemical parameters and scattering parameters in the
wavelength range of 400–2500 nm. The PROSPECT model was used to
simulate the following physiological and biochemical parameters, in-
cluding the following physiological and biochemical parameters: leaf
structure parameter N, chlorophyll concentration Cab (g/cm2), car-
otenoid concentration Car (g/cm2), equivalent water thickness Cw (g/
cm2) and leaf dry matter content Cm (g/cm2). According to the multi-
variate normal distribution of physiological and biochemical para-
meters of common vegetation (Féret et al., 2011; Cheng et al., 2012),
the random 2500 groups data are generated. The mean, standard de-
viation, maximum and minimum values of the data are shown in
Table 1.

2.2. Experimental flow chart

The experimental process includes random measurement of the
sampling data, reconstruction, physiological and biochemical para-
meters inversion, error analysis and result comparison as shown in
Fig. 1. Firstly, the original hyperspectral data are transformed based on
sparse representation, and then are sampled randomly. Secondly, the
reconstructed algorithms of MP, OMP, ROMP, StOMP and CoSaMP are
used to reconstruct the hyperspectral data accurately. Then, the original
data is used to construct the inversion models between the spectral
index and the physiological and biochemical parameters. Finally, the
performance of different reconstruction algorithms are evaluated and
compared.

2.3. Spectral index of plant physiological and biochemical parameters

As important physiological and biochemical parameters, water
content, carotenoid content and chlorophyll content play an important
role in the growth of vegetation (Plummer et al., 1995). Based on the
comprehensive investigation of classical vegetation indices for re-
trieving physiological and biochemical parameters of plants, four
spectral indices are selected for each physiological and biochemical
parameter (Table 2).

2.4. Construction of partial least squares regression model for plant
physiological and biochemical parameters

Considering high inter-spectral correlation, partial least squares
regression (PLSR) (Zhang et al., 2005) is used to construct inversion
model. Taking the PLSR model of the water content as an example, the
count of sample is 2500 and each sample includes the band range of

Table 1
Statistical parameters in PROSPECT model.

Input parameter Unit Mean ± s.d. Min Max

Blade structure parameters
(N)

/ 1.53 ± 0.22 1.01 2.24

Chlorophyll concentration
(Cab)

μg·cm−2 34.58 ± 17.13 0.36 96.58

Carotenoid concentration
(Car)

μg·cm−2 8.66 ± 3.73 0.04 24.41

Equivalent water thickness
(Cw)

g·cm−2 0.015 ± 0.006 0.004 0.036

Leaf dry matter content (Cm) g·cm−2 0.007 9 ± 0.003 3 0.000 8 0.019 5
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