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A B S T R A C T

There is growing interest in estimating and mapping biomass and carbon content of forests across large land-
scapes. LiDAR-based inventory methods are increasingly common and have been successfully implemented in
multiple forest types. Asner et al. (2011) developed a simple universal forest carbon estimation method for
tropical forests that reduces the amount of required field measurements. We tested this approach, along with
standard regression and Random Forest modeling techniques, in a northern hardwood-dominated watershed in
the White Mountains of New Hampshire. Additional objectives included assessing the effects of different in-
ventory plot designs and GPS accuracy. The universal model performed poorly in this forested landscape due to
the lack of a clear relationship between canopy height and stand basal area. Simple regression modeling also
produced poor model fits; the Random Forest models produced somewhat better biomass predictions than either
the universal or regression models, and had low predictive power as measured by R2 but root mean squared
errors were comparable to those from other studies in complex forests. Effects of positional accuracy from survey
vs. resource grade GPS units were slight, as were the effects of varying plot designs, although errors generally
increased when larger basal area factors were used.

1. Introduction

Inventory and monitoring is an essential, but expensive, component
of forest management. Inventory data are important for meeting mul-
tiple management objectives including timber production, wildlife ha-
bitat, forest health, and carbon sequestration (Kershaw et al., 2016). At
regional to national scales, National Forest Inventory data meet some
needs. For example, while the USDA Forest Service’s Forest Inventory
and Analysis Program (FIA) is a source of detailed forest inventory data
(USDA Forest Service, 2017), the inventory is designed to be used at the
state, regional, or national level, with one plot every 2428 ha (Bechtold
and Patterson, 2005). As such, these data are generally not appropriate
for landowners or managers due to the resolution of the sampling de-
sign. Because extensive field work is needed to collect inventory data at
the level of stands or small landscapes, conducting routine forest in-
ventories that meet an acceptable accuracy threshold is often quite
expensive.

Airborne LiDAR, or light detection and ranging, employs a laser and
high precision GPS to produce a three-dimensional representation of
the ground beneath the aircraft’s path; as the laser’s energy hits a

surface, it is reflected back to the instrument and recorded. Multiple
returns are possible from each laser pulse. Airborne LiDAR has been in
use for some time for terrain mapping; this product typically has a low
return density (1–2 pulses per square meter, or ppsm) and is acquired
when the forested portions of the landscape are in a leaf-off condition.
Higher-density LiDAR data from full waveform and discrete return in-
struments have been used by researchers to assess various forest char-
acteristics such as tree density, diameter, basal area (BA), and biomass
(e.g. Lefsky et al., 1999, Beets et al., 2011, Hudak et al., 2006).

LiDAR studies of forest structure have occurred across a variety of
biomes from tropical to boreal forests with variable model results; often
with better results in conifer types or managed landscapes, where tree
and forest structure is less complex and more regular. Zolkos et al.
(2013) performed a meta-analysis on 70 studies reporting carbon or
biomass across a variety of biomes to assess remote sensing approaches
for measuring forest biomass. Biomass modeled from discrete return
LiDAR data had an overall mean R2 of 0.76, and a mean RMSE of
39.4 Mg/ha. In addition, they found that model error (in both absolute
and relative terms) varied by forest type. Anderson and Bolstad (2013)
estimated biomass in a Wisconsin forest by fitting LiDAR models by
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vegetation type, and report an R2 of 0.74 and RMSE of 37.6 Mg/ha for
coniferous stands, values of 0.71 and 42.8Mg/ha for hardwood stands,
while the mixed stands model had an R2 of 0.44 with an RMSE of
48Mg/ha. When all plots were included in the model, the R2 was 0.55
with an RMSE of 43.5 Mg/ha.

While the cost of LiDAR data acquisition is dropping, use of these
data for operational purposes requires that the field measurement
component needed to model forest attributes be conducted efficiently.
Because of the effort and cost associated with collecting information
from a sufficient number of plots in each forest stratum, there have
been efforts to generalize the modeling process to reduce the number of
variables and/or plots measured. Lefsky et al. (2002) conducted an
early test of a generalized model using waveform LiDAR at three sites in
the US: temperate deciduous, temperate coniferous, and boreal con-
iferous (note that throughout this manuscript, deciduous refers to
broadleaved species only). For both temperate coniferous and tempe-
rate deciduous sites, the R2 values for the site specific and general (all
sites combined) models were the same (0.87 and 0.65, respectively),
while for the boreal conifer site the individual model outperformed the
general (0.76 and 0.56, respectively). Use of a generalized model, if
validated for a sufficient number of forests, would be one approach to
reducing the field data collection burden. For tropical forests, Asner
et al. (2011) developed a general approach to estimating aboveground
biomass using mean canopy height from LiDAR data, and plot-level
measurements of basal area and wood density weighted by basal area.
Comparing the predicted and measured aboveground carbon for all 482
plots across four tropical study locations resulted in an R2 of 0.95 with
an RMSE of 15 MgC/ha. Substituting a regional wood density value
produced an R2 of 0.92. Asner and Mascaro (2014) tested a similar
approach using hundreds of plots across 14 tropical ecoregions, and
found that while LiDAR-derived canopy height accounted for 56% of
the variation in aboveground carbon stock, a model that added basal
area and wood density increased that value to 92%.

The intent of this study is to test if this type of generalized approach
is feasible in the New England forested landscape, where deciduous,
coniferous, and mixed stands are present. Use of a more generalized
model with moderate resolution LiDAR data could provide an oper-
ationally feasible approach to LiDAR-based estimation of forest char-
acteristics that would be practical for use by managers. We have four
major objectives:

1. Test the Asner et al. (2011) approach for estimating aboveground
biomass in a Northern hardwood forest.

2. Compare results from the Asner approach to those from conven-
tional estimation methods.

3. Evaluate the suitability of moderate resolution LiDAR data for es-
timating common structural variables such as trees per hectare,
basal area, and height.

4. Evaluate the impacts of changing plot design (including variable
radius plot or prism sampling) and positional accuracy on the
modeled outputs.

2. Materials and methods

2.1. Study area

The study was conducted in a small forested watershed on the
Pemigewasset Ranger District of the White Mountain National Forest,
located in Grafton County, New Hampshire, USA (Fig. 1). The study
watershed is centered approximately at 44.0657○N, 71.8183○W and is
6885 ha in size. Elevation ranges from 328 to 1463m, with slopes
ranging from 0 to 85%. Annual precipitation averages about 1400mm.
The soils range from drainage classes of excessively drained to very
poorly drained and have soil temperature regimes of frigid at the lower
elevations to cryic at the higher elevations. The study area is pre-
dominantly of the soil order Spodosol and as soil parent materials of

Lodgement and Ablation glacial tills, along with areas of Alluvium,
Glaciofluvial and bedrock controlled outcrops. The vegetation is largely
second growth and is a typical northern hardwood forest, consisting of
sugar maple (Acer saccharum), American beech (Fagus grandifolia),
yellow birch (Betula alleghaniensis), paper birch (Betula papyrifera),
white ash (Fraxinus Americana), red oak (Quercus rubra), and red maple
(Acer rubrum), with a conifer component of Eastern hemlock (Tsuga
canadensis), balsam fir (Abies balsamea), white pine (Pinus strobus), and
red spruce (Picea rubens).

2.2. Field data collection and processing

Plot locations were selected by stratified random sampling, with
strata based on overlaying a conjectured soil group map (based on
landform) with management zones defined by U.S. Forest Service reg-
ulations. A total of 176 plot locations were selected across the wa-
tershed. Field crews navigated to the specified coordinates for each plot
using a recreational-grade GPS. Once the plot center was monumented
and established, the plot was georeferenced using both a survey-grade
(Trimble GeoXH, CE with Zephyr antenna) and resource-grade (Trimble
GPS Pathfinder ProXH with Hurricane L1 antenna) GPS. Field data were
collected in the summers of 2013 and 2014, after the final LiDAR ac-
quisition was completed (the LiDAR data were used to inform plot se-
lection).

All trees above 2.5 cm diameter at breast height (DBH) were mea-
sured using a mapped, nested-plot design. Trees from 2.5 to 12.6 cm
DBH were measured on a 4.23m radius fixed-radius plot, while trees
from 12.7 cm to 30.0 cm DBH were measured on a 10m radius fixed-
radius plot. Trees 30.1 cm DBH and over were measured out to the
limiting distance for a 2.25m2/ha basal area factor (BAF) variable ra-
dius plot. In addition to species, status as live or dead, and DBH (to the
nearest 0.1 cm with a tape), the distance and bearing from the plot
center to the pith of each tallied tree was recorded for all trees, allowing
later simulation of sampling from a 10m fixed-radius plot (with nested
subplot for small trees), and variable radius plots with a range of BAF
spanning and exceeding conventional inventory recommendations for
the region (typically ranging from 3.5 to 4.6 m2/ha, but with some
practitioners using 2.3m2/ha; Wiant et al., 1984, Ducey, 2001), as well
as the full original plot design. On all trees close enough to the plot
center to be tallied using a 4m2/ha BAF variable radius plot, total
height was measured using a Vertex hypsometer (Haglof, Inc.). The
trees measured for height represent a size-weighted probability-based
subsample of the full sample of those measured for DBH (Marshall et al.,
2004; Kershaw et al., 2016, ch. 11).

To predict the heights of trees for which heights were not measured,
we evaluated a series of regression equations using a mixed-effects
modeling framework (Pinheiro and Bates, 2000), relying primarily on
information-theoretic model selection using the Akaike Information
Criterion (AIC) (Akaike, 1974, Burnham and Anderson, 2002) but with
additional consideration of other regression diagnostics, including
correlations between parameter estimates, error distribution and cor-
relation, and Schwarz’s Bayesian Information Criterion (BIC). The
overall philosophy in model selection for this study was holistic, aiming
at reliable predictions constructed from a model built on distributional
assumptions that are satisfied by the data, rather than relying on au-
tomatic selection of a model by a single criterion (Claeskens and Hjort,
2008). We did not consider, and do not report here, p-values associated
with regression coefficients: tree height is known to be correlated with
tree diameter, and height-diameter relationships are known to depend
on species and vary with site, both in general and in this region (e.g.
Ducey, 2012), and since the null hypothesis of no relationship is not
credible, such an approach would be a misuse of the null hypothesis
testing paradigm (Anderson et al., 2000). We evaluated two primary
model forms. The first followed Schumacher and Hall (1933) in log-
transforming tree height H, and taking the reciprocal of DBH:
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