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a b s t r a c t

Steady two-dimensional nanofluids boundary layers are studied with focus on heat and mass transfer
properties. The study is conducted by numerical analysis of the nonlinear boundary layer equations in
a self-similar form for the case of constant wall temperature. The density, specific heat, viscosity, conduc-
tivity, and thermal diffusion dependence on the solid-phase volumetric fraction are considered, as well as
the brownian diffusion dependence on temperature. Under the assumption of dilute mixtures, the zeroth
order solution is calculated as an approach to the particles distribution in the boundary layer and it is
compared with the results obtained from the full equations solutions. The effects of the Schmidt number,
the wall temperature, and the particle bulk volumetric fraction on the Nusselt number, the Sherwood
number, and the skin-friction coefficient are elucidated and compared to the values obtained for the pure
fluid and for uniform mixtures. An increase in the heat transfer performances with respect to the case of
the base fluid is found for most of the cases.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the promising potential for heat transfer applications,
nanofluids have received a great attention worldwide in recent
days [1]. These fluids are obtained bymixing nanometer-scale solid
particles in a base liquid, and their applications include, among
others, thermal waste heat management of new power weapons
[2], increase of performances of solar collectors [3,4], or nuclear
safety issues [5]. Regarding these points, the main effect of the
addition of nanoparticles is the increase of the thermal conductiv-
ity much more than the Maxwell’s theory [6] predicts. Addition-
ally, the fact that nanofluids are highly stable [7] make them
attractive as a solution for cooling applications. Notwithstanding
the big effort made, models for heat transfer in nanofluids are
nowadays under continuous revision, both to the particle size level
[8] as to the continuous formulation of the nanofluid behavior
[9,10].

In certain modern works, dating from approximately seven
years ago, nanofluids are modeled as a uniform, homogenous mix-
ture [11–16]. In these studies, the effect of the nanoparticles is con-
sidered only for the calculation of the average properties of the
fluid for a constant, bulk volumetric fraction. This methodology is
supported by the large values of Lewis and Schmidt numbers found
in nanofluids [17]. Nevertheless, in recent years, the effect of the
solid-phase distribution has began to be studied in order to get a
deeper knowledge of nanofluids behavior [18–20]. Most of these

works are based on the four nonlinear equations Buongiorno’s
model [17].

Regarding boundary layer studies, the uniformmixture model is
found up to recent dates, researches in [21–25] considered only the
momentum and energy equations, without taking into account the
particles’ dynamics. In these works, the particles presence is
reduced to a modification of the transport coefficients and, conse-
quently, the effective Reynolds and Prandtl numbers, that differ
from those related to the base fluid. Kuznetsov’s work [26] is a
pioneering study in modeling the conservation equation for the
solid phase for natural convective boundary layer flows. In this
work, the thermal and brownian diffusion coefficients are consid-
ered constant. The same model is used by RamReddy [27] to study
a mixed convection boundary layer with focus in the Soret effect.
As a result of RamReddy’s work, the Soret effect is seemed to
enhance the skin friction, and heat and mass transfer perfor-
mances. Avramenko [18], based on Lie group analysis, performed
a selfsimilar study of convective boundary layers. Considering con-
stant thermal and brownian diffusion factors as in previous works,
the effect of the Schmidt number on boundary layers thickness and
heat and mass transfer is studied. This work concludes that the
local distribution of the particles has no appreciable effect.
Notwithstanding, the mixed convection boundary layer study in
[3] established that thermophoresis and brownian motion play a
key role on both the heat transfer and the nanoparticles distribu-
tion. These phenomena result in the presence of additional nonlin-
ear terms in the equations.
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In view of previous works, the particles fluxes, due to brownian
diffusion and thermophoresis, must be considered when nanoflu-
ids are modeled, or, at least, their impact must be quantified if they
are neglected or simplified in the problems under study. It must
also be taken into account that brownian diffusion in typical
nanofluids is much lower than thermophoresis [17]. Thus, for cool-
ing applications, where the wall is hotter than the bulk fluid, it is
expected a particles migration from the wall. This fact can lead
to a very low particles volumetric fraction near the wall and, con-
sequently, the local conductivity of the nanofluid in this zone
would correspond to the conductivity of the base fluid. In this sce-
nario, any improvement of the heat transfer would be related to a
modification of the temperature field near the wall and not to the
modification of thermal properties of the fluid. A resembling kind
of boundary layer flow has been studied in [28] from an analytical
point of view. In this work, the brownian and thermophoresis coef-
ficients are considered to be constant; additionally, no coupling
between the particles and the temperature or velocity fields is
modeled. This is not the case in nanofluids, where the brownian
diffusion depends on the temperature, and thermophoresis is pro-
portional to the local particle volumetric fraction. Furthermore, the
transport coefficients show a great dependency with the amount of
particles [29–31], which arises nonlinear terms in the problem
formulation.

This work tries to shed light into the importance of considering
the solid phase distribution in the temperature and velocity fields,
and, specifically, in the heat and mass transfer properties of
nanofluids. To do this, the equations of self-similar boundary layers
are derived in Section 2, where two models are presented: the first
one considers the fully coupled nonlinear equations, while the sec-
ond one is based on an expansion of the velocity and temperature
fields up to first order in the bulk volumetric fraction, arising non
coupled equations. The equations are solved numerically, being
the numerical method briefly presented in Section 3. Results for
the different effects are discussed in Section 4.

2. Model and equations

Following Buongiorno [17], a nanofluid can be modeled as a
two-component mixture of a base fluid and nanoparticles under
the assumptions of incompressible flow, dilute mixture (/b � 1,
being /b the bulk particle volumetric fraction), and local thermal
equilibrium for the nanoparticles and the base fluid. Additionally,
the viscous dissipation and the radiative heat transfer are going
to be neglected in this work. Under these postulates, the conserva-
tion equations [17] writes:
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where v is the velocity vector, q is the density, l is the viscosity, k is
the thermal conductivity, and c is the specific heat of the nanofluid;
qp and cp respectively denote the density and specific heat of the
solid particles, T represents the temperature, and / is the particle
volumetric fraction. DB denotes the Brownian diffusion coefficient,
given by the Einstein–Stokes’ expression:

DB ¼ kBT
3plf dp

ð5Þ

with kB being the Boltzmann constant, and dp the particles diame-
ter. Additionally, DT represents the thermal diffusion coefficient,
modeled as:

DT ¼ b
lf

qf
/ ð6Þ

with b ¼ 0:26kf
2kfþkp

[32], where the subscript ðÞf denotes that the proper-

ties are referred to the base fluid.
Considering a reference velocity Uc , a characteristic length Lc ,

and a bulk temperature Tb, the following non-dimensional vari-
ables can be constructed:
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c

and Eqs. (1)–(4) become:
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where nanofluid properties have been referred to the mass and
transport properties of the base fluid:

eq ¼ q
qf

el ¼ l
lf

ek ¼ k
kf

The non-dimensional parameters that appear are:

Reynolds number : Re ¼ qf UcLc
lf

ð11Þ

Prandtl number : Pr ¼ clf

kf
ð12Þ

Lewis number : Le ¼ kf
ðqcÞpDBb/b

ð13Þ

Schmidt number : Sc ¼ lf

qf DBb
ð14Þ

Diffusivities reference ratio : NBT ¼ DBbqf

bflf
ð15Þ

where DBb is the brownian diffusion coefficient for the particles bulk
volumetric fraction.

Under two-dimensional, steady flow assumptions with Re � 1,
and Pr; Le; Sc; LeNBT ; ScNBT of order unity or greater, and being x the
streamwise direction, such that vc ¼ ðue;0Þ, a region close to any
solid wall, known as boundary layer, can be identified [33]. The
solid wall is considered to be placed at y ¼ 0, being y the wall-
normal coordinate. For the boundary layer approximation, the fric-
tion effects are only taken into account within this region, and Eqs.
(7)–(10) can be simplified to:

174 J. Serna / International Journal of Heat and Mass Transfer 92 (2016) 173–183



Download English Version:

https://daneshyari.com/en/article/656528

Download Persian Version:

https://daneshyari.com/article/656528

Daneshyari.com

https://daneshyari.com/en/article/656528
https://daneshyari.com/article/656528
https://daneshyari.com

