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a b s t r a c t

In this paper we describe the implementation of a ghost-cell immersed boundary method for compress-
ible flow with Dirichlet, Neumann and Robin boundary conditions. A general second-order reconstruction
scheme is proposed to enforce the boundary conditions via ghost points. The convergence test shows that
the present method has a second-order accuracy for three types of boundary conditions. Laminar flow
heat transfer problems are used to test the capability of the present method to handle different boundary
conditions with stationary and moving boundaries. The compressible effect on the heat transfer process
is then studied to illustrate the advantage and necessity of combining IB methods with a compressible
flow solver.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The development of accurate and efficient methods for arbitrar-
ily complex geometries and multiple boundary conditions has
been one of the main issues in computational fluid dynamics.
The immersed boundary (IB) method has been demonstrated to
have the capability of handling complex fluid–structure interaction
problems with high efficiency. The advantages of the IB method,
such as simplicity in grid generation, savings in computer
resources and straightforward parallelization, have expanded its
applications in multiphase flow simulations.

The immersed boundary method was first introduced by Peskin
to simulate the blood flow around a human heart valve [1]. The
main idea of this method is to use a Cartesian grid for fluid flow
simulation together with a Lagrangian representation of the
immersed boundary. A forcing term is introduced to represent
the interaction between the immersed boundary and the fluid,
and a discrete Dirac-delta function is used to smooth this singular
force on the Euler grid [2]. Since then, numerous modifications and
improvements have been made, which are well discussed and
categorized in [3–5].

The idea of the ghost cell immersed boundary (GCIB) method is
based on the work of Mohd-Yusof [6] and Fadlun et al. [7]. The
GCIB method treats the immersed boundary as a sharp interface,
and does not require the explicit addition of discrete forces in

the governing equations, thus it can be easily combined with the
existing solvers. The boundary condition on the IB is enforced
through the ‘‘ghost cells’’. The variable values of the ghost cells
are calculated with the IB boundary conditions and the fluid vari-
ables near the boundary. The flow solver senses the presence of
the immersed boundary through the extrapolated values at the
ghost points [8]. In order to avoid numerical instability caused by
the large, negative weighting coefficients in the extrapolation
formula, the concept of mirror points lying inside the flow domain
is adopted to ensure suitable weighting coefficients in the
reconstruction formula. Different interpolation procedures for the
mirror point [9] and extrapolation procedures for the ghost point
[10,11] can be utilized to obtain a second or even higher order
accuracy [12–14]. The GCIB method has shown large potential to
handle different fluid–solid interaction problems, including
those involving highly complex geometries [15–17] and moving/
deforming objects [18–20].

Extension of the immersed boundary method to heat transfer
problems has gained its popularity since Kim and Choi [21]. Many
efforts have been made to improve the accuracy of thermal bound-
ary condition enforcement and broaden its application. Dirichlet
and Neumann type boundary conditions for IB methods have been
studied by many researchers [21–26]. While for more complicated
boundary conditions, such as Robin and conjugate boundary
conditions, the number of available studies are still limited
[27–29]. The Robin boundary condition, also known as the mixed
Dirichlet–Neumann boundary condition, is important in heat and
mass diffusion processes coupled with convection and has been
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used for prescribing thermal or mass fluxes and surface reactions
[30–33].

Many fluid dynamic problems of engineering interest involve
compressible flows with very different Mach numbers and com-
plex heat/mass transfer processes. There are plenty of parameters
that are strongly coupled to each other like density or temperature
in a compressible flow. The influence of temperature ratio and
Mach number on the flow region has been illustrated by Wang
et al. [34] and Sabanca et al. [35]. These results indicate that there
is a large difference in the heat transfer phenomena between the
compressible flow and the incompressible one, and show the
limitation of the incompressible solver for flows with large tem-
perature ratios and high Mach numbers. So far, only a few IB meth-
ods are designed for compressible flows [36,37]. Therefore, it is
desirable to develop an IB method based on a compressible solver
for heat transfer simulation with complex boundary conditions,
which is more practical and has a potential to solve chemical
reaction problems.

To this end, a general boundary condition treatment, using the
ghost-cell immersed boundary method for compressible flows, is
developed and validated in the present work. The interaction
between immersed bodies and the fluid is expressed by ghost
points inside the immersed bodies, and these ghost points ensure
that boundary conditions are satisfied precisely on the immersed
boundary. Different reconstruction stencils are carried out to
maintain the second-order accuracy of the method for different
boundary conditions.

The reminder of the present paper is organized as follows.
Sections 2 and 3 describe the numerical methodology including
the flow solver and the ghost-cell immersed boundary method.
In Section 4 the capability of the proposed methodology to handle
heat transfer problems with different boundary conditions in
compressible flows is verified and validated, including flows with
moving interface and medium Mach numbers. Section 5 is devoted
to summary and conclusions.

2. Governing equations

The Navier–Stokes equations for a compressible fluid are
introduced here. The continuity equation is solved in the form

@q
@t
þr � ðquÞ ¼ 0; ð1Þ

where q is the fluid density, u is the fluid velocity, t is time.
The momentum equation is written in the form

Du
Dt
¼ 1

q
ð�rpþ FvsÞ; ð2Þ

where p is the pressure, Fvs ¼ r � ð2qtSÞ is the viscous force, t is the
kinematic viscosity, Sij ¼ 1

2 ð@ui=@xj þ @uj=@xiÞ � 1
3 dijr � u is the

trace-less rate of strain tensor and D=Dt ¼ @=@t þ u � r is the
convective derivative.

The energy equation is

@ ln T
@t
¼ �u � r ln T þ 1

qcpT
ðr � ðkrTÞ þ 2qtS � SÞ; ð3Þ

where T is the temperature, cp is the specific heat at constant
pressure and k is the heat conductivity.

The ideal gas equation of state is given by

p ¼ qRT ð4Þ

and can be reduce to

p ¼ c2
s q: ð5Þ

for isothermal flow. Here cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@p=@q

p
is the speed of sound.

The solvers of the PENCIL CODE [38] are utilized for the present
study. The sixth-order centered finite-difference scheme for spatial
derivatives and third-order Runge–Kutta scheme for time advance-
ment are used to solve the above governing equations. In the sim-
ulations, the time step is specified as the Courant time step that is
calculated based on a number of constraints involving maximum
values of velocity, viscosity, and other quantities on the right hand
sides of the evolution equations.

3. Ghost-cell compressible immersed boundary (GCCIB) method

In order to impose the boundary condition in such a way that
ensures a sharp interface separating the compressible fluid and
the solid, a ghost-cell immersed boundary methodology is devel-
oped here. The advantage of easy implementation of this method
enables us to use the existing solver of the PENCIL CODE. The basic
idea of the GCCIB method developed here to handle different types
of boundary conditions is based on the work of Haugen et al. [39].

A schematic diagram of the present GCCIB method is shown in
Fig. 1. The domain in shadow denotes the solid domain and the rest
is the fluid domain. For the sixth-order finite central difference
scheme used here, three layers of ghost points (s) are needed to
complete the discretization stencils near the boundary. The other
grid points inside the solid domain are solid points (j) which are
not used in the calculation. At the beginning of the simulations, a
detection of the immersed boundary and assignments of ghost
points and fluid points are carried out. Then the wall normal direc-
tion from each ghost point can be determined. In this study, the
mirror points are defined as the points that are normal to the
immersed boundary, lying in the fluid domain and have the same
distance to the immersed boundary as their corresponding ghost
points.

In most situations, the mirror points do not coincide with the
grid points. Thus a bilinear interpolation for 2D cases (or
tri-linear interpolation for 3D cases) is used to calculate the fluid
properties at the mirror points. The bilinear interpolation for a mir-
ror point with four surrounding fluid points can be expressed as

/ðx; y; zÞ ¼ C1xyþ C2xþ C3yþ C4: ð6Þ

Here / denotes a generic variable at the mirror point. The four
unknown coefficients can be determined using the variable values
of the four surrounding points

Fig. 1. 2D schematic diagram for the GCIB method, ghost points ( ), mirror points
(s), boundary intersection (BI) points (d), fluid points (h) and solid points (j).
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