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a b s t r a c t

In order to understand the flow pattern transition processes, a series of three-dimensional numerical sim-
ulations for thermal–solutal capillary convection in an annular pool subjected to simultaneous radial
temperature and solutal concentration gradients were conducted. The capillary ratio was fixed at �1.
The working fluid was the toluene/n-hexane mixture with the Prandtl number of 5.54 and the Schmidt
number of 142.8. Results show that there exists a quiescent conductive state in the liquid pool when ther-
mocapillary Reynolds number is small. With the increase of thermocapillary Reynolds number, the flow
bifurcates orderly into three different kinds of the oscillatory flows, i.e., the travelling wave, the combined
travelling wave with stationary wave, and the vibrating spoke pattern. The oscillatory frequency
increases monotonously for the travelling wave and the combined travelling wave with stationary wave.
Furthermore, the wave number is independent of the thermocapillary Reynolds number. These multiple
complicated flow patterns are due to the different distributions of the local capillary ratio along the free
surface.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The crystal growth theory always links to the thermodynamics
and hydrodynamics, which can be regarded as the cornerstone of
the crystal growth technology [1]. So far, many investigations on
the melt flow in the single crystal growth have been performed
systematically [2,3]. Recently, double-diffusive convection and
thermal–solutal capillary convection relating to the binary crystal
growth also attract an increasing attention.

Double-diffusive convection is driven by the coupled thermal
and solutal buoyancy forces. The early investigations on double-
diffusive convection are motivated by oceanography and the later
applications in crystal growth, alloy solidification and casting
[4,5]. A special case is that the induced thermal and solutal buoy-
ancy forces are opposite and of equal magnitude, i.e., buoyancy
ratio Rq = �1. In this case, whether the directions of the tempera-
ture and concentration gradients are vertical or horizontal, there
exists a quiescent equilibrium corresponding to the pure conduc-
tive state. Gobin and Bennacer [6] performed a stability analysis
of double-diffusion convection in a vertical fluid layer and claimed
that the critical Rayleigh number is a function of the Lewis number
but independent on the Prandtl number. Bergeon and Knobloch [7]

found a complex flow state with the finite amplitude nonlinear
oscillation by numerical simulation. This kind of the flow seems
to be either periodic or chaotic. In the following decades, this issue
has been investigated systematically by utilizing bifurcation anal-
yses, stability analyses and numerical simulation [8–11].

In the binary melt with a free surface, the capillary forces
depend on the temperature and solute concentration distributions
along the free surface. When the capillary ratio is Rr = �1, the solu-
tal and thermal capillary effects are equal and opposite. In this
case, the quiescent state in the liquid layer has been certified
[12–14]. The Hopf bifurcation from steady state to periodical oscil-
latory state, reverse transitions from oscillatory flow to quiescent
equilibrium and from chaotic flow to steady one have been pre-
dicted [13,14]. Furthermore, different routes of flow evolution
were also exhibited [15]. On the other hand, Yu et al. [16] found
that the solutal concentration gradient induced by the temperature
gradient has slightly effect on the travelling waves.

It’s worth mentioning that the annular geometry meets the
requirement of a large spatial extension for travelling waves to
establish them azimuthally. The oscillatory thermocapillary flow
in an annular pool is usually characterized by travelling waves
i.e. the ‘‘hydrothermal waves” (HTWs) [3]. Li et al. [17,18] dis-
cussed the mechanisms of the convective instabilities and the crit-
ical conditions for the onset of the oscillatory thermocapillary flow
in the annular pool. It was found that the azimuthal velocity of the
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HTWs and the amplitude of the temperature fluctuation increase
with the radial temperature gradient. However, there are few
reports that are paying attention to the coupled thermal and solu-
tal capillary convection in a shallow annular pool subjected to
simultaneous radial thermal and solutal gradients. The present
work aims mainly at the flow pattern transition of the coupled
thermal–solutal capillary convection and the destabilization
mechanism.

2. Physical and mathematical model

2.1. Basic assumptions and governing equations

The physical model is annular pool that the inner radius, outer
radius and depth of the annular pool are respectively marked as ri,
ro and d. The radius ratio is defined as g = ri/ro, while the aspect
ratio is e = d/(ro � ri). At the cylindrical sidewalls, distinguishing
temperatures To and Ti, concentrations Co and Ci are allocated,
where To > Ti and Co > Ci.

Assumptions for the simplification are based on the Refs.
[12–14]. It is suggested that the flow is laminar. The nonde-
formable free surface and the bottom wall of the annular pool
are perfectly adiabatic and impermeable. The no-slip boundary
condition is applied for all the solid walls. The binary fluid is
assumed to be an incompressible Newtonian fluid with constant
physical properties except for the surface tension. The Soret effect,
the Dufour effect and the viscous dissipation have been neglected.
On the free surface, the capillary boundary condition is taken into
consideration and the surface tension is the linear function of the
temperature and concentration. By applying (ro � ri), (ro � ri)2/m,
m/(ro � ri) and qm2/(ro � ri)2 as the reference scales for length, time,
velocity and pressure respectively, the dimensionless governing
equations can be expressed as:

r � V ¼ 0; ð1Þ

@V
@s

þ V � rV ¼ �rP þr2V ; ð2Þ

@H
@s

þ V � rH ¼ 1
Pr

r2H; ð3Þ

@U
@s þ V � rU ¼ 1

Sc
r2U: ð4Þ

where V = V(VR, Vh, VZ) denotes the dimensionless velocity vec-
tor, m kinematic viscosity, H = (T � Ti)/(To � Ti) the dimensionless
temperature and U = (C � Ci)/(Co � Ci) the dimensionless
concentration.

Under the assumptions and definitions above, the boundary
conditions at the free surface are expressed as follows:

PVZ ¼ 0;
@VR

@Z
¼ �ReT

@H
@R

� ReC
@U
@R

;

@Vh

@Z
¼ �ReT

@H
R � @h� ReC

@U
R � @h ;

@U
@Z

¼ @H
@Z

¼ 0 ð5a-dÞ

The initial conditions are expressed as follows (s = 0):

VR ¼ Vh ¼ VZ ¼ 0; H ¼ U ¼ � ln½Rð1� gÞ=g�= lng: ð6a-bÞ

The thermal and solutal capillary Reynolds numbers, and the
capillary ratio are respectively defined as:

ReT ¼ cTDTðro � riÞ
lm

; ReC ¼ cCDCðro � riÞ
lm

;

Rr ¼ ReC
ReT

¼ cCDC
cTDT

¼ �1: ð7a-cÞ

where DT = To � Ti and DC = Co � Ci. cT and cC are temperature and
solutal coefficients of surface tension, respectively. l is dynamic
viscosity of the working fluid.

In the present work, the capillary ratio, the aspect ratio and the
radius ratio of the annular pool are respectively fixed at Rr = �1,
e = 0.15 and g = 0.5. The working fluid is the toluene/n-hexane
solution with an average toluene mass fraction of C0 = 0.2627.
The thermophysical properties of the toluene/n-hexane solution
come from Refs. [19–22].

2.2. Numerical method and mesh validation

The governing equations and the boundary conditions are dis-
cretized by using the finite volume method and solved by the SIM-
PLEC algorithm [13,14]. The central-difference approximation is
applied for the diffusion terms while the QUICK scheme is used
for the convection terms. In order to ensure the accuracy, the small
dimensionless time steps of (0.6–1.2) � 10�4 are chosen. It is
proved that the iteration residual error of 10�4 is accurate enough
for the present simulations.

The nonuniform mesh of 80R � 200h � 25Z is used. Moreover,
the numerical method has been validated by comparing with sim-
ulation results of thermal–solutal capillary convection in the cubic
cavity that was performed by Zhan et al. [14]. The similar flow pat-
terns, the temperature and concentration fields have been repro-
duced. The maximum deviation of Nusselt (Nu) numbers is less
than 2.3%.

3. Results and discussion

In this work, the coupled thermal–solutal capillary convection
of the binary solution with the moderate Prandtl number of
Pr = 5.54 and Lewis number of Le = 25.28 in the annular pool at
the capillary ratio of Rr = �1 has been carefully investigated at a
wide range of thermocapillary Reynolds number. With the increase
of thermocapillary Reynolds number, various flow patterns are
exhibited as follows.

3.1. Quiescent equilibrium (QE)

When thermocapillary Reynolds number is small, there exists a
quiescent equilibrium state in the liquid pool up to ReT = 915.
When the thermocapillary and solutocapillary forces are of equal
magnitude and contrary direction, two capillary effects are bal-
anced each other. This quiescent equilibrium state has been dis-
cussed in Bergman’s original work [12]. Furthermore, according
to the linear stability analysis of the thermal–solutal capillary con-
vection in a cavity performed by Chen et al. [13], the motionless
equilibrium state loses its stability due to small disturbances and
then bifurcates to oscillatory flow at ReT = 362.

3.2. Three-dimensional oscillatory flow

When the thermocapillary Reynolds number is large enough,
three-dimensional (3D) oscillatory flows appear in the liquid pool.
In this case, the flow pattern depends mainly on the revised ther-
mal capillary Reynolds number ReT

i , solutal capillary Reynolds
number ReCi and capillary ratio Rr

i , which are defined as

ReiT ¼
cTðro� riÞ2

lm
@T
@r

� �i

; ReiC ¼
cCðro� riÞ2

lm
@C
@r

� �i

; Reir ¼ReiC
ReiT

; ð8a-cÞ

where (oT/or)i and (oC/or)i are the local temperature and solute con-
centration gradients along the radial direction on the free surface.
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