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a b s t r a c t

The present paper is concerned with estimating the effective conductivity of a composite consisting of
spherical particles dispersed inside a matrix in a statistically homogeneous and isotropic way. The
interface between every spherical particle and the matrix is thermally imperfect and described by the
general linear isotropic imperfect model resulting from the replacement of an interphase of weak
thickness by an interface of zero thickness. This general model includes as extreme particular cases
Kapitza’s (or lowly conducting) thermal resistance model and the highly conducting thermal imperfect
interface model. The fundamental solution is derived for the problem of a spherical particle embedded,
via a general imperfect interface, in an infinite matrix undergoing a remote uniform intensity boundary
loading. With the help of this fundamental solution, closed-form estimates for the size-dependent
effective conductivity of the composite are deduced by using the dilute distribution, Mori–Tanaka,
self-consistent and generalized self-consistent schemes. These results, incorporating as particular ones all
the relevant estimates reported in the literature, are discussed and compared through numerical examples.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The study of interface effects in composites is a research subject
of lasting interest (see, e.g., [1–6]). This is, in particular, because in
many practical situations, the interfaces between the constituent
phases of a composite are often imperfect and strongly affect its
effective properties. In the context of linear thermal conduction,
there are mainly three models proposed for modeling imperfect
interfaces (see, e.g., [7–14]). The first one is the well-known
Kapitza’s thermal resistance or lowly conducting (LC) interface
model. According to this model, the temperature suffers a jump
an interface while the normal heat flux is continuous across it
and proportional to the temperature jump. The second one is the
highly conducting (HC) interface model in which the temperature
is continuous across an interface while the normal heat flux across
the same interface is discontinuous and has to verify the Laplace-
Young equation. The third one is the general interface model which

is proposed by Benveniste [15], Bövik [16] and Gu and He [17] on
the basis of the replacement of a thin interphase by an imperfect
interface. This model is characterized by two relations governing
the temperature and normal heat flux jumps. Moreover, the gen-
eral imperfect interface model includes the LC and HC interface
models as particular cases. Indeed, upon requiring the conductivity
of the interphase to be much lower or higher than that of each of
its surrounding phases, the two latter ones can be retrieved from
the former one [15,10].

Significant progress has been accomplished in studying the
effects of imperfect interfaces on the effective conductivity of com-
posites by theoretical analysis (see, e.g., [3,7,9,23,12,18–22]), by
numerical simulations (see, e.g., [24–27]), or by experimental
efforts (see, e.g., [14,21,28,29]). Concerning theoretical analysis,
the works [23,30], for example, analyzed the effect of the LC and
HC interfaces by using the equivalent inhomogeneity method in
which an equivalent inhomogeneity perfectly bonded to the
infinite matrix is used to replace an imperfectly bonded inhomoge-
neity in an infinite matrix under an energy equivalency condition;
in the paper [8], closed-form estimates have been derived for the
effective conductivity of a composite in which spheroidal inhomo-
geneities are embedded via LC interfaces; in [18,19], Le Quand et al.
provided closed-form estimates for the effective anisotropic
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conductivity of composite with LC and HC interfaces by using the
extended Eshelby tensors; in [31,32], Lipton and Talbot established
the upper and lower bounds on the effective conductivity of compos-
ites with LC and HC interfaces by using appropriate variational prin-
ciples. In regard to numerical simulations, Yvonnet et al. [26,27]
simulated the LC and HC interface effects by combining the level-
set method (LSM) and the extended finite element method (XFEM);
Dolbow et al. [24,25] proposed a finite element method based on
the Nitsche technique to deal with a transport problem in which
the temperature and normal flux discontinuities intervene. In the
framework of experimental research, some authors [22,29] deter-
mined the HC interface material parameters in a composite by using
inverse analysis. However, the works reported in the literature on the
linear imperfect interfaces in composites are almost exclusively lim-
ited to either the LC or HC interface. Consequently, the study of the
effects of general linear imperfect interfaces on the effective thermal
conductivity of composites remains a largely open research issue.

The present work is concerned with micromechanical estima-
tion of the effective conductivity of composites consisting of a
matrix in which spherical inhomogeneities are embedded via gen-
eral imperfect interfaces. It has the following two objectives:

1. First, it aims at deriving the solution to the important auxiliary
problem of a spherical particle in an infinite matrix via an
imperfect interface. This solution of general importance can in
particular be applied to establish the relations between the
local and global fields. In contrast with the relevant results
reported in the literature (see, e.g., [8,18,19]), which often hold
only for the LC or HC interface, our results are valid for the gen-
eral linear imperfect interface.

2. Second, it has the purpose of estimating the effective conductiv-
ity of composites in question by adjusting the well-established
micromechanical schemes to the presence of general imperfect
interfaces in them. This purpose will be achieved by using the
solution derived for the auxiliary problem, by choosing an
appropriate reference phase and by imposing relevant boundary
conditions according as the micromechanical scheme is applied.
In particular, we show that our results include as particular ones
those obtained in [8,18,19] for the LC and HC interfaces.

The paper is organized as follows. In the next section, the back-
ground of the problem to be solved is presented with emphasis on
the general linear isotropic thermal imperfect interface model and
its relations to Kapitza’s (or LC) and HC interface models. Section 3
is dedicated to deriving the fundamental solution to the problem
of a spherical inhomogeneity embedded via a general linear isotro-
pic imperfect interface in an infinite matrix undergoing a remote
uniform intensity loading. In Section 4, with help of the fundamental
solution obtained in Section 3, the closed-form estimates are
deduced for the effective conductivity of isotropic composites in
question by successively using the dilute distribution, Mori–Tanaka,
self-consistent and generalized self-consistent schemes. In Section
5, numerical examples are provided to illustrate the results of Sec-
tion 4 and, in particular, the size-dependency of the effective con-
ductivity. In Section 6, a few concluding remarks are drawn.

2. Setting of the problem

The composite under consideration consists of m spherical inho-
mogeneities embedded in a matrix. Let X be the three-dimensional
(3D) domain bounded by @X and occupied by a representative vol-
ume element (RVE) of the composite. The subdomains of X occupied
by the matrix and the ith inhomogeneity (or inclusion) are desig-
nated by XðMÞ and XðiÞ such that X ¼ XðMÞ [Xð1Þ [ � � � [X m�1ð Þ [X mð Þ.
The interface between the matrix XðMÞ and the ith inhomogeneity

XðiÞ is denoted as Ci. The matrix and the inhomogeneities are
assumed to be individually homogeneous and have the linear ther-
mal conduction behavior described by an isotropic Fourier’s law:

qðrÞ ¼ k rð ÞeðrÞ: ð1Þ

Here, qðrÞ and eðrÞ represent the heat flux and intensity fields of
phase r ð¼ M;1; . . . ;mÞ and kðrÞ stands for the thermal conductivity
of phase r. The intensity field eðrÞ is related to the temperature field
uðrÞ by

eðrÞ ¼ �ruðrÞ: ð2Þ

In the absence of heat source, the heat flux vector qðrÞ satisfies the
following energy conservation equation

div qðrÞ ¼ 0: ð3Þ

The interface between a generic inhomogeneity and the matrix
is described by the general interface model initially proposed by
Benveniste [15], Bövik [16] and then extended by Gu and He
[17]. In order to specify the physical background of this interface
model, we consider two configurations (Fig. 1). In the three-phase

one (Fig. 1(a)), an inhomogeneity phase XðiÞ is embedded in the
matrix phase XðMÞ via a thin interphase of uniform thickness h
which is perfectly bonded to the matrix and inhomogeneity
phases. In the two-phase one (Fig. 1(b)), the interphase is elimi-
nated and replaced by a zero-thickness imperfect interface located
at the middle surface C of the interphase and the matrix phase and
the inhomogeneity phase are extended up to C so as to occupy the

subdomains XðþÞ and Xð�Þ. The unit vector normal to C at x 2 C,
noted as nðxÞ, is oriented from the inhomogeneity phase to the
matrix phase. By requiring that the temperature and normal flux
jumps across the interphase in the three-phase one be, to within

an error of order 0 h2
� �

, equal to the corresponding jumps across

the same zone in the two-phase one, and by applying the Taylor’s
expansion together with the continuous conditions of a perfect
interface, the appropriate jumps across C are derived and charac-
terized by the following relations [10,15]:

sut ¼ uðþÞ �uð�Þ ¼ h
2

1

kðMÞ
� 1

kðIÞ

� �
qðþÞn þ

1

kðiÞ
� 1

kðIÞ

� �
qð�Þn

� �
; ð4Þ

sqnt ¼ qðþÞn � qð�Þn ¼ h
2

kðIÞ � kðMÞ
� �

DsuðþÞ þ kðIÞ � kðiÞ
� �

Dsuð�Þ
h i

: ð5Þ

In these expressions, s � t represents the interfacial jump operator
defined by s � t ¼ �ðþÞ � �ð�Þ with �ðþÞ and �ð�Þ standing for the values
of a quantity � evaluated at C on the inhomogeneity and matrix
sides, respectively; qn denotes the normal heat component given
by qn ¼ q � n; kðiÞ; kðMÞ and kðIÞ stand for the thermal conductivities
of the inhomogeneities, matrix and interphase.

Let h�i be the interfacial average operator defined by
h�i ¼ ð�ðþÞ � �ð�ÞÞ=2. To simplify (4) and (5), recall the identities

ð�Þ �ð Þ ¼ h�i � 1
2

s � t: ð6Þ

Applying (6) to (4) and (5), we obtain

sut¼ h
2

1

kðMÞ
� 1

kðIÞ

� �
hqni�

1
2

sqnt

� �
þ 1

kðiÞ
� 1

kðIÞ

� �
hqniþ

1
2

sqnt

� �� �
;

ð7Þ

sqnt¼
h
2

kðIÞ �kðMÞ
� �

Ds hui�
1
2

sut

� �
þðkðIÞ �kðiÞÞDs huiþ

1
2

sut

� �� �
:

ð8Þ

Taking into account the fact that the jump s � t of any quantity ð�Þ
involved in the right-side members of these two equations is of
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