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a b s t r a c t

The fractal geometry theory and method are used to simulate the rough surface topography. The pressure
gradients, friction factors and Poiseuille numbers for laminar flow through microchannels with rough-
ened surfaces are derived. The proposed fractal models for the relative increases of the pressure gradient,
friction factor, and the Poiseuille numbers of laminar flow through microchannels with roughened sur-
faces are found to be a function of the microstructural parameters of roughness surfaces. These param-
eters are the fractal dimension, maximum peak, minimum peak, and the ratio of the minimum diameter
to the maximum diameter of conic peaks on roughened surfaces. Moreover, every parameter in the pro-
posed models has clear physical meaning. The model predictions are compared with those of the existing
measurements. Fair agreement between the fractal model predictions and experimental data is found.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the past decades, tremendous attention has been given to
fluid flow in microchannels due to the rapid development of
Micro-Electro-Mechanical Systems (MEMS) such as micro-motors,
micro-pumps, micro-sensors, micro-valves, micro-turbines and
micro-actuators. Flow characteristics (velocity distribution and
pressure drop) have the remarkable effect on the design and pro-
cess control of MEMS [1–3] and heat transfer processes [4,5].

Pfahler et al. [6,7] carried out the experimental investigation on
fluid flow in microchannels, and they concluded that for larger
channels the experimental data showed the excellent agreement
with the classical theory, however, as the channel diameter is
reduced, an increasing deviation from the classical theory was
observed. Measurements [1,8–13] have shown that the Poiseuille
number (or the friction constant f � Re) of laminar flow in rectangu-
lar microchannels are higher than that of the classical theory [14],
and the same conclusion was obtained by other researchers [15–
18] in cylindrical microchannels. This phenomenon may be attrib-
uted to surface roughness effects. Mala and Li [8] studied water
flow through microtube of fused silica (FS) and stainless steel
(SS), and they proposed a roughness-viscosity model to interpret
the experimental phenomena. However, this model contains as
many as 4 empirical/fitting constants. Qu and Mala [12] also car-
ried out a similar study and introduced the roughness viscosity
in the equation of motion. However, the roughness viscosity

obtained by fitting their experimental data has as many as 5
empirical/fitting constants.

It has been shown that the rough surfaces have the fractal char-
acters and can be described by fractal geometry and technique
[19–22]. Majumdar and Bhushan [20] proposed the size distribu-
tion of contact spots on engineering surface by fractal geometry
theory. Warren and Krajcinovic [21] applied the random Cantor
set to simulate the elastic-perfectly plastic contact of rough sur-
faces. He and Zhu [22] characterized the rough surfaces by W–M
function [20] and by using the fractal dimension and characteristic
length. Chen and Cheng [23] measured the fractal dimension D for
roughness surfaces profiles in microchannels used by Pfund et al.
[10], and they found that the Poiseuille number in roughened
microchannels is a function of the classical Poiseuille number,
average height of rough elements and hydraulic radius. But, the
proposed expression has two empirical constants determined by
fitting Pfund et al.’s experimental data. Bahrami et al. [3] proposed
that the wall roughness posses a Gaussian isotropic distribution.
Zhang et al. [24] and Chen et al. [25] applied the Weierstrass–Man-
delbrelbrot function to characterize the multiscale self-affine
roughness. Recently, Chen et al. [26] described the topography of
the rough surface by using a Cantor set to numerically simulate
heat transfer in the microchannels. Chen et al. [27] introduced
the fractal W–M function to characterize the multiscale self-affine
rough surface of microchannels and evaluate the role of the rough
surface structure on the thermal and hydrodynamic properties by
using a computational fluid dynamic simulation. Zhang et al. [28]
used a lattice Boltzmann simulation of gas slip flow incorporating
rough surface effects with a focus on gas–solid interaction.
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In this work, a fractal model for flow friction in microchannels is
derived based on the assumption that the roughened surfaces in
microchannels have the statistically isotropic and self-similar frac-
tal characters. The theoretical predictions of flow resistance from
the proposed model will be compared with the existing experi-
mental data in microchannels with roughened surfaces.

2. Fractal theory for roughened surfaces

Mandelbrot [29] in his famous book ‘‘The Fractal Geometry of
Nature’’ proposed that the cumulative size distribution of islands
on earth’s surface follows the fractal scaling law: N(A > a) � a�D/2,
where N is the total number of islands of area A greater than a,
and D is the fractal dimension for size distribution of islands on
Earth’s surface. Marjumdar and Bhushan [20,30] used the fractal
scaling law to describe the contact spots (roughness elements)
on engineering surfaces, and the fractal scaling law is

NðL P aÞ ¼ ðamax=aÞD=2 ð1Þ

where a and amax are respectively the spot area and maximum spot
area on engineering surfaces, L is the scale of measurement, and D is
the fractal dimension for area distribution of spots, and 0 < D < 2. If
D = 2, the spots cover a two-dimensional plane. If D = 0, this refers
to a smooth surface because the number of spot on a surface is
approximately zero, compared to that as D = 2. Yu and Cheng [31]
extended Eq. (1) for describing the spots on engineering surfaces
to describe the pores in porous media.

Warren and Krajcinovic [21] and Chen et al. [26,32] described
the self-affine topography of the rough surface by using a Cantor
set. As we know, self-affine has unequal scaling in different direc-
tions, and Manelbrot [29] showed that the dimension of self-affine
curves can be obtained from their power spectra; Marjumdar and
Bhushan [30] explained the difference between the self-similarity
and self-affinity. They wrote: ‘‘The definition of self-similarity is
based on the property of equal magnification in all directions’’. That
means the fractal dimension is the same in all directions for self-
similarity fractals. However, for self-affine fractals, they pointed
out that ‘‘there are many objects in nature which have unequal

scaling in different directions’’. This implies that the fractal dimen-
sion is different in different directions.

Some investigators [33,34] showed that rough elements (conic
peaks) on rough surfaces are statistically self-similar fractals.
Therefore, in this work, we also assume that peaks on a surface
do not overlap each other and are statistically self-similar fractals,
not self-affine fractals, which will be our next work and will be
addressed elsewhere. In this work, we assume that the spots on
surfaces are cone-shaped as shown in Fig. 1 [35], and the ratio of
height to base diameter of conic peak is n = h/k.

Since this work assumes that rough elements (conic peaks) on
rough surfaces have the statistically self-similar fractal characteris-
tic, the base diameter of cone-shaped distribution also follows the
fractal scaling law, and then Eq. (1) can be modified as

Nðd P kÞ ¼ kmax

k

� �D

ð2Þ

where k and kmax are respectively the base diameter and maximum
base diameter, D is the fractal dimension for the base diameter dis-
tribution of cone-shaped peaks/spots. In Eq. (2), 0 < D < 2, and D = 2
means that a surface is so rough (or a surface is covered so many
rough elements) that the surface profile makes a channel’s diameter
become as possibly as small, i.e. the actual cross-sectional area for
flow in the channel becomes as possibly as small, and D = 0 corre-
sponds to a smooth surface.

In general, there are numerous elements of roughness on
roughened surfaces. Eq. (2) can thus be considered as continuous
and differentiable equation. By differentiating with respect to k,
the number of roughness elements in the infinitesimal range of k
to k + dk can be found to be

�dN ¼ DkD
maxk

�ðDþ1Þdk ð3Þ

where �dN > 0. Eq. (3) indicates that the number of roughness ele-
ments increases with the decrease of sizes.

From Eq. (2), the total number of roughness elements from the
minimum diameter kmin to the maximum diameter kmax can be
obtained by

Ntðk P kminÞ ¼
kmax

kmin

� �D

ð4Þ

Nomenclature

D the fractal dimension for the base diameter distribution
of cone-shaped peaks/spots.

N the number of conic peak
Vi the volume of a cone-shaped peak/spot
Vt the total volume in a set of fractal cones
S1 the total base area of cones for a set of fractal cones
S0 the total area for a unit cell
Si the base area for a cone-shaped peak/spot
L0 the side length of a unit cell
R the radius of the cylindrical microchannel
b the height in a smooth rectangular microchannel
W the width in a smooth rectangular microchannel
�heff the effective average height of cones/roughness

elements
h the height of conic peak
um the mean velocity over the cross section in a smooth

microchannel
Q the volume flow
sw the wall shear
f friction factor
Re the Reynolds number
Dh hydraulic diameter

Po Poiseuille number
k the base diameter of conic peak
kmin the minimum diameter of conic peak
kmax the maximum diameter of conic peak
n the ratio of height to base diameter of conic peak
a the ratio of the minimum diameter to the maximum

diameter
/s the area ratio of the total base area of all cone-shaped

peaks/spots to the whole surface area of a unit cell the
dynamic viscosity

er the relative roughness in rectangular roughened micro-
channels

ec the relative roughness in cylindrical roughened micro-
channels

L representative length
b the relative increase of the pressure gradient

Subscripts
c cylindrical
cs cylindrical smooth microchannels
R rectangular roughened microchannels
cR cylindrical roughened microchannels
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