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H I G H L I G H T S

• A new formulation is proposed to
study drops/bubbles in complex geo-
metries.

• The multiphase domain is successfully
tackled using a conservative level set
method.

• The simulation domain is optimized
by using a moving mesh.

• Inner and intricate boundaries are
handled by using an immersed
boundary method.

• Extensive numerical tests were con-
ducted in order to validate the pro-
posed method.
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A B S T R A C T

The present work proposes a method to study problems of drops and bubbles evolving in complex geometries.
First, a conservative level set (CLS) method is enforced to handle the multiphase domain while keeping the mass
conservation under control. An Arbitrary Lagrangian-Eulerian (ALE) formulation is proposed to optimize the
simulation domain. Thus, a moving mesh (MM) will follow the motion of the bubble, allowing the reduction of
the computational domain size and the improvement of the mesh quality. This has a direct impact on the
computational resources consumption which is notably reduced. Finally, the use of an Immersed Boundary (IB)
method allows to deal with intricate geometries and to reproduce internal boundaries within an ALE framework.
The resulting method is capable of dealing with full unstructured meshes. Different problems have been studied
to assert the proposed formulation, both involving constricting and non-constricting geometries. In particular,
the following problems have been addressed: a 2D gravity-driven bubble interacting with a highly-inclined
plane, a 2D gravity-driven Taylor bubble turning into a curved channel, the 3D passage of a drop through a
periodically constricted channel, and the impingement of a 3D drop on a flat plate. Good agreement was found
for all these cases study, which proves the suitability of the proposed CLS+MM+ IB method to study this type
of problems.

https://doi.org/10.1016/j.cej.2018.05.110
Received 14 February 2018; Received in revised form 18 May 2018; Accepted 19 May 2018

⁎ Corresponding author.
E-mail addresses: kike@cttc.upc.edu (E. Gutiérrez), quim@cttc.upc.edu (J. Rigola).

Chemical Engineering Journal 349 (2018) 662–682

1385-8947/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/13858947
https://www.elsevier.com/locate/cej
https://doi.org/10.1016/j.cej.2018.05.110
https://doi.org/10.1016/j.cej.2018.05.110
mailto:kike@cttc.upc.edu
mailto:quim@cttc.upc.edu
https://doi.org/10.1016/j.cej.2018.05.110
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cej.2018.05.110&domain=pdf


1. Introduction

The motion of drops and bubbles in complex geometries is of fun-
damental importance in many scientific and engineering applications.
To cite a few examples, chemical reactors generally involve many drop-
wall collision processes [1], and its understanding could seriously de-
termine the efficiency of the reactor. The field of microfluidics [2] and
lab-on-a-chip concept are fed from the knowledge of the behaviour of
bubbles and drops evolving through microgeometries. Additionally, the
oil extraction processes could ultimately be reduced to the evolution of
a slug flow through constricting solids.

The motion of bubbles and drops in unbound mediums has attracted
significant scientific attention in the last decades (see Tryggvason et al.
[3] for an extensive numerical review). On the contrary, the literature
about bubbles/drops evolving through complex geometries is far more
limited. An meaningful distinction within these problems is stressed
here, depending on the relation between the secondary phase and the
surrounding geometry. On the one hand, the solid could constrict the
bubble or drop, and its trajectory is somehow predetermined by the
own shape of the solid. On the other hand, the bubble/drop could freely
evolve in an unbounded media, whereas the present solids alter its
motion, but in an unconstrained manner. The border between both
types of cases is diffuse, and the classification of a specific problem in
one group or the other can be ambiguous. See Fig. 1 for a graphical
interpretation of both types of problems.

In order to face both types of problems, different approaches have
been proposed in the literature. Experimental procedures usually isolate
the basic phenomenon to macroscopically study the motion of the
secondary phase. See [4–7] for some valuable experimental works.
Additionally, the problem of drops or bubbles evolving in complex
geometries can also be addressed theoretically by simplifying the gov-
erning equations to extract analytical conclusions (see e.g. [8,9]). Fi-
nally, some valuable numerical approaches have been conducted to
solve the aforementioned problem [10–13]. Table 1 compiles some of
the outstanding works present in the literature, highlighting the method
used to solve the problem and the relationship between drop/bubble
and geometry.

When facing this type of problems by using a numerical approach,
three paramount issues should be addressed in order to satisfactorily
solve the case study:

(i) The fluid interface must be computed accurately while conser-
ving integral properties.
(ii) The computational cost should be kept within reasonable
bounds.
(iii) The solid geometries, which could be complex and intricate,
should be represented effectively and robustly.

Regarding the first item, there are two main groups of methods to
deal with multiphase domains. On the one hand, the interface between
fluids could be reproduced by using a Front-Tracking method [24].
These techniques accurately describe the multiphase flow, although
their implementation may be burdensome due to the need of re-
computing the mesh at each time step. On the other hand, the eulerian
methods represent the multiphase domain by a continuous (though
sharp) change of properties. Those methods include volume-of-fluid
(VoF) techniques [25], level set (LS) methods [26,27] and hybrid pro-
cedures (CLSVOF) [28]. Level set approaches have the advantage of
precisely calculating the geometrical properties of the interface (i.e.
normal and curvature). However, they present mass conservation
drawbacks. On the contrary, the volume-of-fluid methods inherently
conserve mass, but at the expense of a troublesome process of com-
puting geometrical properties of the interface. Hybrid methods solve
the two issues present in the above-mentioned techniques, but the
computational cost significantly increases. In the present work, we
propose a methodology based on a conservative level set (CLS) for-
mulation for unstructured meshes, first reported by Balcázar et al. [29].
The CLS formulation dramatically reduces the mass conservation error
in comparison with a standard level set method. This technique has
been thoroughly verified [30,31].

Further efforts have been reported in the development of con-
servative level-set methods, e.g. the level set remedy approach based on
sigmoid function [32], and the accurate conservative level-set method
[33]. In the present CLS formulation [29], interface normals are com-
puted using a least-squares method on a wide and symmetric nodes-
stencil around the vertexes of the current cell [29]. These normals are
then used for an accurate computation of surface tension, without ad-
ditional reconstruction of the distance function, as in geometrical vo-
lume-of-fluid/level-set methods [28] or fast-marching methods [33].
Moreover, most computational operations are local. Therefore this
method is efficiently implemented for parallel platforms [29,34]. The
CLS method has been designed for general unstructured meshes [29].
Indeed, the grid can be adapted to any domain, enabling for an efficient
mesh distribution in regions where interface resolution has to be
maximized [28,29,31,34,35], which is difficult by using structured
grids. Furthermore, a TVD flux-limiter scheme [29] is used to advect the
CLS function, avoiding numerical oscillations around discontinuities,
whereas the numerical diffusion is minimized. Finally, the present fi-
nite-volume formulation is attractive due to its simplicity and the sa-
tisfaction of the integral forms of the conservation laws over the entire
domain [29].

When facing the problem of a bubble/drop evolving in complex
geometries by using DNS methodologies, the computational resources
consumption should be a topic of major concern. This is because the
need of enough resolution to represent real geometries, together with
the high-demanding process of solving the Navier-Stokes equations.
With the exception of basic configurations, a decision should be taken
regarding this point. An option is to work under a 2D or axisymmetric
hypothesis [11,22]. However, if a full 3D approach is sought, a domain
optimization method becomes mandatory (e.g. non-inertial reference
frame, periodic domain, etc.). In the present work, we enforce a moving
mesh (MM) technique to deal with small simulation domains. This
Arbitrary Lagrangian-Eulerian (ALE) formulation is based upon the
work of Estruch et al. [36]. The mesh follows the motion of the bubble/
drop. Under those circumstances, the simulation domain can be limited
to the important regions of the problem (i.e. the bubble/drop and its
surroundings). This allows a great saving of computational effort,

Fig. 1. Two main scenarios may appear when studying the evolution of bub-
bles/drops in complex geometries: (a) an unconstrained situation, in which the
geometry does not determine beforehand the movement of the bubble/drop;
and (b) a constrained situation where a tubular geometry forces the movement
of the bubble/drop following a driving curve.
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