Accepted Manuscript

Synergy Effects of Combined Red Muds as Oxygen Carriers for Chemical Looping Combustion of Methane

Guixian Deng, Kongzhai Li, Zhenhua Gu, Xing Zhu, Yonggang Wei, Xianming Cheng, Hua Wang

PII:	\$1385-8947(18)30283-3
DOI:	https://doi.org/10.1016/j.cej.2018.02.072
Reference:	CEJ 18551
To appear in:	Chemical Engineering Journal
Received Date:	10 December 2017
Revised Date:	9 February 2018
Accepted Date:	15 February 2018

Please cite this article as: G. Deng, K. Li, Z. Gu, X. Zhu, Y. Wei, X. Cheng, H. Wang, Synergy Effects of Combined Red Muds as Oxygen Carriers for Chemical Looping Combustion of Methane, *Chemical Engineering Journal* (2018), doi: https://doi.org/10.1016/j.cej.2018.02.072

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Synergy Effects of Combined Red Muds as Oxygen Carriers for Chemical Looping Combustion of Methane

Guixian Deng^{a,b}, Kongzhai Li^{b,c,*}, Zhenhua Gu^b, Xing Zhu^b, Yonggang Wei^b, Xianming Cheng^b, Hua Wang^b

Thanking Chong , That Wang

^a Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China

 ^b State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
^c Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China

*Corresponding author: Kongzhai Li (kongzhai.li@aliyun.com; kongzhai.li@foxmail.com)

Abstract

Iron-containing natural ores or solid wastes (e.g., red mud) are considered as ideal candidate as oxygen carrier for large-scale chemical looping combustion technology due to their high content of Fe_2O_3 and low cost. However, these oxygen carriers usually show low activity for fuel conversion because of the special structure and components. In the present study, two types of red mud (V-RM with rich Fe₂O₃ and W-RM with rich inert and alkaline components) were combined to modify the structure and the distribution of different components in the red mud oxygen carrier

Download English Version:

https://daneshyari.com/en/article/6579944

Download Persian Version:

https://daneshyari.com/article/6579944

Daneshyari.com