Chemical Engineering Science 190 (2018) 149-163

Contents lists available at ScienceDirect

Chemical Engineering Science

journal homepage: www.elsevier.com/locate/ces

Liquid residence time distribution of multiphase horizontal flow in packed bed milli-channel: Spherical beads versus open cell solid foams

CHEMICAL

ENGINEERING SCIENCE

Marion Serres^{a,b,1}, Daniel Schweich^a, Valérie Vidal^b, Régis Philippe^{a,*}

^a Laboratoire de Génie des Procédés Catalytiques (UMR 5285), CNRS, CPE Lyon, UCBL, Université de Lyon, F-69616 Villeurbanne, France ^b Laboratoire de Physique (UMR 5672), CNRS, ENS de Lyon, Université de Lyon, F-69342 Lyon, France

HIGHLIGHTS

Robust access to liquid RTD in smallscale porous packings under multiphase flow conditions is presented.

- Dense micro-packed beds are compared to open cell solid foams.
- A modified liquid hold up correlation is developed and is valid for both packings.
- RTD broadening is explained by a combination of convective dispersion and mass transfer to a fraction of immobile liquid.

ARTICLE INFO

Article history: Received 22 January 2018 Received in revised form 13 April 2018 Accepted 2 May 2018

Keywords: Multiphase flow Milli-channel Packed bed Open cell solid foam Hydrodynamics Segmented Taylor flows

G R A P H I C A L A B S T R A C T

ABSTRACT

A robust approach to access liquid residence time distribution (RTD) adapted to multiphase flow in porous media is presented. It is tailored to meet specific requirements of small scale systems (centimeter, millimeter or less) with Taylor segmented flow feed. The method involves direct visualization using fluorescence microscopy close to both extremities of a porous packing. Critical image treatment steps and optimization of a versatile discrete model with 4 parameters are detailed and discussed. They allow the precise and rapid determination of RTD curves and their 1st- and 2nd-order moments. The application of the method is successfully illustrated with dense micro-packed beds of sub-millimeter particles and highly porous media like open cell solid foams undergoing a preformed G-L segmented (Taylor) flow. Original results regarding the effect of fluid flowrates and different confined porous media are discussed and lead to a single two-parameter liquid hold up correlation, which is valid for both packings. As usual, RTD broadening is treated as a combination of convective dispersion and mass transfer to a fraction of immobile liquid. The predominant role of mass transfer is underlined with an analysis of characteristic times.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Micro- or milli-packed beds (MPBs) of small catalyst particles (10–200 $\mu m)$ became established and efficient lab-tools in the case

of heterogeneously catalyzed gas–liquid (G-L) reactions (Losey et al., 2001; van Herk et al., 2005; Al-Rifai et al., 2016; Moulijin et al., 2016, Faridkhou et al., 2016). Their attractive mass and heat transfer performances and their low material inventory are the driving reasons for this development. Overall, they help speeding up the access to intrinsic chemical activity (van Herk et al., 2009) and optimizing operating conditions in potentially unconventional and risky domains where macroscale reactors are difficult to operate (Inoue et al., 2007). Additionally, these tools can be of great

^{*} Corresponding author.

E-mail address: regis.philippe@lgpc.cpe.fr (R. Philippe).

¹ Current adress: IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, F-69360 Solaize, France.

Nomenclature

$CV_{\tilde{t}_{exp}}$	variation coefficient of the 1st-order moment of the RTD [%]	α', β' γ	pa su
$CV_{\sigma^2_{exp}}$	variation coefficient of the 2nd-order moment of the	δ	di
	RID [%]	δ_F	re
d	spherical particle diameter [m]		cu
d _{pore}	mean cell (OCSFs) or pore (MPB) diameter [m]	3	VO
E(t)	residence time distribution function $[s^{-1}]$	$\epsilon\delta$	m
E(s)	Laplace transform of the RTD [-]	E _{bulk}	m
$\underline{E_R}(\theta)$	RTD in reduced time coordinate [–]	\mathcal{E}^*	re
$E_R(s)$	Laplace transform of the RTD in reduced time coordi- nate [-]	\mathcal{E}_L \mathcal{E}_L^{mod}	lic lic
$F_{L,i}(t)$	cumulative raw tracer intensity [a.u.]	θ	re
$F_{i}(t)$	cumulative tracer intensity after baseline correction [a u]	θ	fra
$F^{mod}(t)$	modelled cumulative tracer intensity [2 11]	θ _{im}	fra
$\frac{I_i}{r_i}(t)$			vi
$F_i^{mod}(s)$	modelled cumulative tracer intensity in Laplace domain	0	de
		σ^2	va
h	channel height [m]	σ^2	va
$I_i(t)$	raw tracer intensity [a.u.]	σ_i^{i2}	re
J	number of mixing cells in series [–]	U	ic
K _{im}	ratio of immobile to mobile liquid fractions [–]	Cubanin	t
of	objective function [–]	Subscrip	us:
Q_i	volumetric flowrate of fluid <i>i</i> [m ³ /s]	1	111
r	radius of the gas injection channel [m]	1	111
S	Laplace variable [s ⁻¹]		00
S _L	liquid saturation in the porous media [–]	DF	ar
t	first-order moment of the RTD [s]	exp	ex
t _i	first-order moment of curve <i>i</i> [s]	G	ga
t _m	residence time of the mobile liquid phase [s]	L	110
t _M	mass transfer time between mobile and stagnant zones	min	m
	[S]	max	m
t _D	characteristic time of hydrodynamic dispersion in the	mod	m
	mobile zone [s]	ĸ	re
t _T	characteristic time of mass transfer between static and dynamic zones [s]	5	SO
<i>u</i> _i	superficial velocity of the fluid <i>i</i> [m/s]	Abbrevia	atior
UDE	drift flux velocity [m/s]	CSTR₄	se
V	volume of liquid [m ³]	-	pa
\vec{v}_i	Eigenvectors of the variance-covariance matrix $(i = 1-4)$	FFT	fa
	[-]	LHS	La
V_R	volume of the reactor [m ³]	MPB	m
		OCSF	op
Greek svi	nhols	PPI	pc
$\alpha \beta$	parameters of the drift flux model by Molga and	RTD	re
ω, μ	Westerterp (1997) [-]		

interest to mimic and understand the complex two-phase flow patterns occurring at intergranular pore scale in larger scale reactors.

For production purpose, this concept faces scalability and operability issues inherent to multiple channel geometries. Important pressure drop, clogging, uniform two-phase distribution, reproducible loading, catalytic bed replacement and heat exchange integration are among them. Nonetheless, several examples are reported in the literature with reliable small production throughput (Plucinski et al. 2005; Lerou et al., 2010; Deshmukh et al. 2010; Inoue et al. 2015).

Recently, milli-channels containing alternative porous structures like pillar arrays (de Loos et al., 2010; Yang et al., 2015), open-cell solid foams (Saber et al. 2012; Liu et al. 2013; Tourvieille et al. 2015, 2015a) or ordered porous media (Häfeli et al., 2013; Elias and von Rohr, 2016; Potdar et al. 2017) have been reported for multiphase applications. All these internals still

α', β'	parameters of the adapted drift flux model [–]	
γ	surface tension [N/m]	
δ	distance from channel wall [m]	
δ_F	residuals between the model and experimental outlet F ₂	
	curves [-]	
3	volume averaged foam or bed porosity [–]	
$\epsilon\delta$	mean porosity at a distance δ from the channel walls [–]	
E _{bulk}	mean porosity far from the walls [–]	
\mathcal{E}^*	reduced porosity, $\varepsilon \delta / \varepsilon_{bulk}$ [–]	
EL ,	liquid hold up of the reactor [-]	
ε_L^{mod}	liquid hold up estimated from the drift flux model [–]	
heta	reduced time coordinate, <i>t/t</i> [–]	
θ_m	fraction of mobile liquid phase [-]	
θ_{im}	fraction of immobile or stagnant liquid phase [–]	
μ	viscosity [-]	
ρ_{2}	density [kg/m ³]	
σ_2^2	variance of the RID [s ²]	
$\sigma_{i_{D}}^{2}$	variance of the curve $i [s^2]$	
σ^2	reduced variance of the RID [s ²]	
Subscripter		
0	initial values	
1	inlet	
2	outlet	
DF	drift flux	
exp	experimental	
G	gas	
L	liquid	
min	minimum	
max	maximum	
mod	model	
R	reactor, reduced.	
S	solid	
CSTR .	series of continuously stirred tank reactor model with A	
C5114	norometers	
FFT	fast Fourier transform	
LHS	Latin hypercube sampling	
MPB	micro packed bed	
OCSF	open cell solid foam	
PPI	pores per inch	
RTD	residence time distribution	

exhibit very good mass transfer and reaction performances but with drastically reduced pressure drop which can be attractive for future lab-tools or millireactor concepts.

At millimeter scale, in a wide range of feeding conditions and in empty channels, gas-liquid flows are often self-organized as segmented flows (also well-known as Taylor flows) (Kreutzer et al., 2005a, 2005b). A global understanding of the progressive disorganization of this flow entering porous beds (spheres, foams, etc.) is of fundamental importance because it governs the phase ratio, local mixing, the gas-liquid contact surface area and eventually the mass transfer performance. Residence Time Distribution (RTD) measurements provide precious and meaningful information (mean residence time and phase hold up of each fluid phase, dispersive behavior, presence of dead-zones or by-pass, etc.) about these issues. It helps handling and modeling the spreading of the reactants and products along the reactor which can lead to selectivity and conversion issues. Download English Version:

https://daneshyari.com/en/article/6588315

Download Persian Version:

https://daneshyari.com/article/6588315

Daneshyari.com