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h i g h l i g h t s

� An updated form of the Sieder-Tate viscosity correction factor is obtained.
� Nusselt number relationships for the hot and cold wall are distinct.
� A general and exact solution for any range viscosity ratios is presented.
� Asymptotic forms closely relate to the exact solution for moderate viscosity ratios.
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a b s t r a c t

In most heat transfer applications, knowledge of the viscosity variation is important. Thus viscosity cor-
rection factors have been researched and proposed for almost a century. One of the most successful rela-
tions was reported by Sieder-Tate in 1936, which has been widely used in engineering analysis and
design. In this study, we have improved on the Sieder-Tate relation, following a classical theoretical anal-
ysis of the thermal boundary layer. An exact solution to the viscosity correction factor was obtained
which shows that the Sieder-Tate correction factor over-predicts the heat transfer coefficient in the case
of cold wall (cooling) and does not hold properly for hot wall (heating). We have found that a relation of
l1
lw

� �0:254
(in case of cooling) and l1

lw

� �0:087
in the case of heating is better than the Sieder-Tate factor of

l1
lw

� �0:14
(uniformly applied to both the heating and cooling cases). Here l1 and lw are the bulk and wall

viscosity coefficients respectively. The theoretical analysis also shows that the above correction factors

are limited to small values of ln lw
l1

� �
(for cold wall) and ln l1

lw

� �
(for hot wall). However a general solution

has been obtained and the correlation developed by Petukhov (1970) closely matches the exact solution
for the case of cold wall cooling of a fluid.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Convective heat transfer (heating or cooling) of fluids in a pipe
flow is inevitably present in any processing industry, for example
in heat exchangers, coolant flows, power generators, etc. However,
design of such systems or any heat transfer equipment requires,
amongst other inputs, knowledge of heat transfer coefficients
which depend on the properties of the fluid, flow characteristics
and geometry. The viscosity of the fluid depends strongly on tem-
perature, and so the thermal gradient across the boundary layer
creates a spatial variation in viscosity. In the case of cooling, the
dynamic viscosity at the wall ðlwÞ is larger than the bulk viscosity

ðl1Þ, whereas when the fluid is heated, lw
l1

< 1. One of the early

correlations reported by Sieder and Tate (1936) includes what is
probably the most widely used viscosity correction factor in

engineering heat transfer design. They suggested that l1
lw

� �0:14
should be the viscosity correction factor to be applied to the Nus-
selt number (Nu) for both heating and cooling situations. This was
obtained by correlating heat transfer data with the mainstream
fluid properties and temperature. In the work by Petukhov
(1970), the viscosity correction factor obtained empirically by
non-linear fitting to experimental data generated two exponents:
0.11 in the case of heating, and 0.25 in the case of cooling.

The later work by Field (1990) presents viscosity corrections
obtained theoretically from classical boundary layer analysis. Field
found that the correction factors, for small or moderate values of
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l1
lw
, are in the form of l1

lw

� �p
; in the case of cooling, p ¼ 0:1 whereas

for heating, p ¼ 0:27. These correction factors were considered
superior to those obtained by Sieder and Tate (1936) and
Petukhov (1970), and the influence of viscosity variations on con-
densation was explored by Field (1992). However, in deriving the
correction factors, two inherent assumptions were made with
respect to the thermal boundary layer. In following the classical
heat transfer analysis they were: (i) the spatial variation of the
temperature is linear in space and (ii) the shear stress is assumed
to be constant. Improving on these two assumptions, was the moti-
vation of the present work.

For a Newtonian fluid the theoretical analysis by Yang (1962)
generated an index of 0.11. As noted by Joshi (1978) there is a sub-
stantial discrepancy between this result and that of Shannon and
Depew (1969) who performed a similar analysis for the case of a
uniform heat flux boundary condition; their results gave an index
of 0.3 at the entrance to the tube decreasing to 0.14 in the fully
developed region. Joshi (1978) concluded that further work was
needed to clarify the situation but the focus of his own work was
on non-Newtonian fluids. That Yang (1962) and Shannon and
Depew (1969) had significantly different results may well be due
to the former considering only heated tubes. The present work
clearly considers the separate cases of a heated wall and a cold
wall. In the present work, we have assumed that the thermal
boundary layer is smaller than the hydrodynamic boundary layer,
Pr > 1, which is true for most liquids (other than liquid metals) and
concentrated upon Newtonian fluid in the laminar regime. We
have considered here a fully developed hydrodynamic profile and
a developing thermal boundary layer. Furthermore, for many liq-
uids such as oils, the thermal boundary layer will be thin compared
to the thickness of the hydrodynamic boundary layer because the
ratio (dT=d) depends upon Pr�1=2. As a result much of the thermal
boundary layer will be within the laminar sub-layer; we return
to this point later.

2. Theoretical analysis

In classical thermal boundary layer analysis for the estimation
of the heat transfer coefficient, a quadratic temperature profile is
considered, as given by Schlichting and Gersten (2003), Hartnett
et al. (1998), Kay and Nedderman (1985)

h ¼ 2~y� ~y2 ð1Þ
where h ¼ Tw�T

Tw�T1
is the scaled temperature, Tw is the boundary wall

temperature and T1 is the bulk temperature. Here ~y ¼ y=dT is the
scaled y-coordinate from the wall with respect to the thermal
boundary layer thickness. In extending the classical heat transfer
analysis of Kay and Nedderman (1985) which did not allow for spa-
tial viscosity variations, Field (1990) made two assumptions:

(i) to account for the linear temperature dependence on the vis-
cosity of the fluid in the thermal layer ð~y < 1Þ, the viscosity is
considered dependent on the spatial variable ð~yÞ as
l
lw

¼ expð�a~yÞ; ð2Þ

where lw is the viscosity of the fluid at the wall ð~y ¼ 0Þ and a is a
function of the ratio of the change of the viscosity between the bulk
and the wall such that a ¼ lnðlw=l1Þ. When the wall cools the
fluid, a > 0; and when the fluid is heated a < 0.

(ii) The shear stress, s is considered constant within the thermal
boundary layer, 0 < ~y < 1, which is reasonable if the velocity
is linear within the thermal boundary layer, and holds satis-
factorily for large Prandtl number.

However, for Pr > 1, which is true for most liquid flows
(Lienhard and Lienhard, 2017), we relax both of the above assump-
tions. We define the viscosity dependence on temperature of the
fluid as

l
lw

¼ expð�ahÞ ¼ exp½�að2~y� ~y2Þ�; ð3Þ

and considering an isothermal flow of a Newtonian fluid, the shear
stress linearly decreases with distance from the wall

s ¼ swð1� ~yÞ; ð4Þ
where sw is the wall shear stress. Using the stress-strain constitu-
tive relationship of a Newtonian fluid s ¼ l du

dy, together with Eqs.

(3) and (4), we can write

ð1� ~yÞ ¼ expð�ahÞ d~u
d~y

; ð5Þ

Nomenclature

cp specific heat transfer capacity of the fluid, J � kg � K
de hydraulic diameter of the pipe, m
F correction factor, as defined in Eq. (12)
h heat transfer coefficient, W=m2 K
�h spatially averaged heat transfer coefficient, W=m2 K
k thermal conductivity of the boundary wall, W=m � K
Nu Nusselt number, defined as

�hde
k

p exponent for the viscosity relation l1=lw
Pr Prandtl number, defined as cpl1=k

q0 heat flux across the wall, W=m2

Re Reynolds number, defined as qumde
l1

T temperature of fluid, K
T1 temperature in the bulk fluid, K
Tw temperature of the boundary wall, K
u fluid velocity, m/s
~u non-dimensional fluid velocity, equals u lw

swdT
u1 maximum fluid velocity, m/s

um mean fluid velocity in the channel, m/s
x Abscissa of the coordinate, m
y co-ordinate from the wall, m
~y scaled y-coordinate with respect to dT

Greek symbols
a logarithm of the viscosity ratio, equals lnðlw=l1Þ
d hydrodynamic boundary layer thickness, m
dT thermal boundary layer thickness, m
h non-dimensional temperature, equals Tw�T

Tw�T1
l viscosity of the fluid, Pa�s
l1 viscosity of the bulk fluid, Pa�s
lw viscosity of the fluid at the wall ðy ¼ 0Þ, Pa�s
q density of the fluid, kg/m3

s shear stress of the fluid, Pa
sw wall shear stress, Pa
w0 non-dimensional parameter, equals

R 1
0
~uð1� hÞd~y
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