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h i g h l i g h t s

� Evaporation changes temperature
and vapour density at sessile droplet
interfaces.

� New predictions for interface vapour
density and evaporative flux are
obtained.

� New predictions reduce to classical
models if interface cooling is
negligible.

� Comparison with the literature data
shows significant effects of interface
cooling.
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a b s t r a c t

The diffusion-driven evaporation of sessile droplets from planar surfaces is influenced by cooling at the
air-liquid interface. Here, corrections to the available models for predicting the evaporation process are
presented. The mass conservation for diffusion-driven evaporation is resolved by considering the effect of
interface cooling on the change in density of saturated vapour along the liquid-vapour interface of sessile
droplets. Corrections to the predictions for the spatial distribution of vapour density around a sessile dro-
plet and the evaporative flux of vapour at the interface are obtained. The classical models are recovered
from the new predictions if interface cooling is negligible. Comparison between the new and classical
predictions for the local surface evaporative flux is obtained using the literature data. Our analysis shows
a significant effect of interface cooling which should be considered in predicting diffusion-driven evapo-
ration of sessile droplets on planar surfaces.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Diffusion-driven evaporation of sessile droplets on planar sur-
faces plays an important role in a number of industrial applications
such as the supply of foliar fertilizers, pesticides, and insecticides
to plants through the leaf surface, drying of dairy product, spray
cooling, ink-jet printing, and coating. Research over the last two
decades has focused on understanding how the contact angle and
contact line at the intersection between the droplet surface and

the solid surface influence the evaporation kinetics. Droplet evap-
oration has been explained and described by applying a number of
modes (Nguyen and Nguyen, 2012a; Picknett and Bexon, 1977),
including the constant-contact-angle, constant-contact-radius,
and stick-slip modes.

The underlying theory is based on mass conservation for the
vapour evaporation by diffusion, as described by Fick’s second
law. For example, researchers (Deegan et al., 1997; Erbil, 2015;
Picknett and Bexon, 1977) have applied the theory to explain the
coffee-ring effect on evaporation of suspensions of colloidal parti-
cles. The key equation for a non-uniform local evaporative flux,
JðaÞ, was obtained as a function of contact angle, h, between the
gas-liquid and solid-liquid interfaces as follows:
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where Cs is the constant (saturated) vapour density at the droplet
surface, C1 is the liquid vapour density far away from the droplet
surface (at infinity), R is the droplet base radius, D is the vapour
diffusion coefficient, s is the integration dummy. a is the local
position of the droplet surface in the toroidal coordinate system,
which is related with its radial coordinate (measured perpendicular
to the droplet axis of rotational symmetry) by
r ¼ R sinha=ðcoshaþ cosbÞ. Pis�1=2ðcoshaÞ is the toroidal (or ring)
function (i.e., the first-kind Legendre function of the complex half-
integral degree and the argument of the hyperbolic cosine function)
(Magnus et al., 1966) and i ¼

ffiffiffiffiffiffiffi
�1

p
is the imaginary unit.

Eq. (1) is very well known in the literature and can be found in
many papers, e.g., (Hu and Larson, 2002; Nguyen and Nguyen,
2012b; Nguyen et al., 2012; Popov, 2005). It presents one of the
key classical models of diffusion-driven evaporation of sessile dro-
plets on a planar surface and has provided the framework for fur-
ther investigations. Recently, the models have been extended to
describe the diffusion-driven evaporation of sessile droplets
affected by interface cooling. In this extension, the constant vapour
density at the droplet surface, such as Cs in Eq. (1), is replaced by a
function of the local surface coordinate, CsðaÞ, yielding (Gleason
and Putnam, 2014)
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Function, CsðaÞ, of vapour saturation density at the droplet sur-
face in Eq. (2) was determined by interpolating the experimental
results for the droplet surface temperature (Gleason and Putnam,
2014).

In this paper, the effect of interface cooling on diffusion-driven
evaporation of sessile droplets is re-examined. The new corrections
to the available models for diffusion-driven evaporation of sessile
droplets are established. We show that the newly established mod-
els for describing the diffusion-driven evaporation of sessile dro-
plets affected by interface cooling, such as that described by Eq.
(2), have to be corrected.

2. Theoretical analysis

We consider a sessile droplet of the spherical-cap shape placed
on a solid planar surface. The sessile droplet has rotational symme-
try about the direction of gravity. It can suitably be described using

the cylindrical coordinate system ðr; z;uÞ, whose cylindrical axis
(z) is opposite to the direction of gravity (Nguyen et al., 2012).
The coordinate system has its origin at the centre of the droplet
base and its polar axis (r) lying on the solid surface (Fig. 1). Mass
conservation of vapour evaporation by diffusion is described by
Fick’s second law. Specifically, the evaporation is usually described
by the well-known Laplace partial differential equation, r2C ¼ 0,
for the liquid vapour density, C, in the half-space above the droplet
surface and the planar surface. The Laplace equation can suitably
be solved by applying the method of separation of variables in
the toroidal coordinate system ða; b;uÞ (Nguyen et al., 2012). The
solution can be expressed in terms of the normalized vapour con-

centration, eC , as follows:

eC � Cða;bÞ � C1
Ce � C1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cosha� 2 cosb

p Z 1

0
EsPis�1=2ðcoshaÞ cosh½sð2p� bÞ�ds

ð3Þ
where Ce ¼ Csð1Þ is the vapour density at the droplet edge
(a ! 1). In Eq. (3), Es is a function of the integration dummy
(independent of the toroidal coordinates a and b), which can be
determined from the boundary conditions. The other symbols are
previously defined in conjunction with Eq. (1). The solution is
independent of u because of the rotational symmetry. The two
coordinate systems are linked by a complex mapping, where
zþ ir ¼ iR coth aþib

2 , where R is the base radius of the droplet. The
solution is also bounded by the physical domain: 1 > aP 0 and
3p� h P b P 2p as shown in Fig. 1.

Since the complex mapping gives r ¼ R sinha
coshaþcosb and z ¼ R sinb

coshaþcosb,

we have
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshaþcosb
cosha�cosb

q
, which shows that a point at infin-

ity (i.e.,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p ! 1) is characterised by the ‘‘point” of a ¼ 0 and
b ¼ 2p. The other important details for applying the boundary con-
ditions include the following special values of the toroidal
coordinates:

(1) The droplet edge (i.e., r = R and z = 0): a ! 1 and b ¼ 2p,
(2) The droplet surface: 1 > aP 0 and b ¼ 3p� h, and
(3) The solid surface in the vapour phase: 1 > a P 0 and

b ¼ 2p.

It now can be seen that the solution described by Eq. (3) can
identically satisfy the following conditions:

(1) The boundary condition at infinity, i.e., Cð0;2pÞ ¼ C1 since
the term under the square root on the right-hand side of
Eq. (3) is equal to 0 when a! 1 and b ¼ 2p,

(2) The symmetric condition at the axis of symmetry:
ð@C=@aÞa¼0 ¼ 0, and

(3) The boundary condition at the solid-vapour interface:
ð@C=@bÞb¼2p ¼ 0 for the zero flux of vapour diffusion.

The physical description of the effect of interface cooling during
droplet evaporation can be implemented via the boundary condi-
tion applied at the droplet surface, i.e., b ¼ 3p� h. Traditionally,
the vapour concentration at the droplet is considered as a constant
as discussed in the Introduction. Due to interface cooling during
droplet evaporation, the surface temperature may change along
the droplet surface, and so does the surface (saturated) vapour con-
centration. Therefore, the surface vapour concentration can
become a function of the droplet surface coordinates, which is a
in the toroidal coordinate system, and we have

Cða;3p� hÞ ¼ CsðaÞ ð4Þ

Fig. 1. Schematic of the cylindrical co-ordinates (r, z, u) and the reduced toroidal
coordinates (a, b, u) in the meridian plane (u = const) used to describe the
evaporation of a sessile droplet with a spherical cap shape on a flat surface. The
contact angle h is defined through the liquid phase.
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