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H I G H L I G H T S

� Multiscale modeling of ibuprofen batch crystallization.
� Calculation of evolution of ibuprofen crystal shape distribution.
� Model predictive control of ibuprofen crystal shape distribution.
� Comparison with standard control policies.
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a b s t r a c t

In this work, we focus on multiscale modeling and control of a seeded batch crystallization process used
to produce ibuprofen crystals. For the modeling of the crystal growth process, we consider kinetic Monte
Carlo (kMC) simulations comprising of molecule adsorption, desorption, and migration type microscopic
surface events. To account for growth rate variability, we propose a model for growth rate dispersion
(GRD), based on the available experimental data, which will be applied at the individual crystal growth
level in the kMC simulations. Finally, a model predictive controller (MPC) is developed in order to control
the crystal size distribution of ibuprofen in the batch crystallization process and the MPC closed-loop
performance is compared against constant temperature control (CTC) and constant supersaturation
control (CSC) policies. The proposed MPC is able to deal with the constraints of the control problem, in
addition to minimizing the spread of the crystal size distribution in a superior fashion compared to the
other control methodologies, which improves the crystal product quality at the end of the batch.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Crystallization is a key separation process in the pharmaceu-
tical industry which is estimated to be over a $1 trillion per year
industry. It is used for drug purification, separation, and pre-
formulation. A key consideration in crystallization is that in order
to achieve desired crystal product quality, the process environ-
ment must be controlled appropriately. Otherwise, the target drug
could lose purity, stability, and bio-availability.

Simulation techniques are valuable tools that can be used in
crystal growth modeling which usually consist of equilibrium
Monte Carlo (MC) and kinetic Monte Carlo (kMC) simulations, as
well as molecular dynamics (MD) simulations (Lovette et al.,
2008). A well-written book by Frenkel and Smit (2002), in addition

to a review by Rohl (2003), goes into detail about the development
of these simulation techniques. In regards to crystallization, MD
simulations are quite helpful when looking at how molecules
move and how they are incorporated into the crystal, however, the
length and time scales of MD simulations make them difficult to
use for process modeling (Lovette et al., 2008). On the other hand,
kMC simulations allow for more realistic length and time scales by
using rate equations that describe different microscopic phenom-
ena. To this end, kMC simulation methods have been widely used
to simulate molecular-level phenomena like crystal nucleation,
growth, and aggregation (Bortz et al., 1975; Dai et al., 2005, 2008;
Gillespie, 1976, 2007; Rathinam et al., 2003; Reese et al., 2001;
Snyder et al., 2005; Gilmer and Bennema, 1972; Kwon et al. 2013a,
b, 2014; Jolliffe and Gerogiorgis, 2015). Furthermore, kMC simula-
tion methods have been successfully applied to compute the net
crystal steady-state growth rate accounting for the dependence of
the desorption and migration rates on the local surface micro-
configuration. For that reason, we look to investigate the batch
crystal growth process of ibuprofen, one of the most widely used
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non-steroidal anti-inflammatory drugs (NSAID), via kMC simula-
tions in this work. Due to the lack of availability of primary
nucleation rate data, we will consider a seeded batch crystal-
lization process and keep the supersaturation at low enough levels
that the impact of nucleation and crystal fines formation will be
minimal compared to the amount of crystals seeded to the system.

Ibuprofen works by reducing prostaglandins, which are the
hormones causing inflammation and pain in the body. These are
usually referred to as local hormones since they only act close to
the location where they are produced. Although they are helpful
initially since swelling will restrict injured areas and increased
blood flow will assist in healing, longer term pain is undesirable.
Thus, many different types of painkillers are used, where ibupro-
fen is one of the most common and widely available choices. In the
US, ibuprofen brand Advil was the top over the counter (OTC)
brand by revenue in 2013 with just over $490 million.

More specifically, we first model the ibuprofen crystal growth
process. In order to do this, we investigate the growth rates of the
(001) and (011) faces via a kMC simulation model. To account for
variability in experimental crystal growth rate data, we develop a
model for growth rate dispersion (GRD) since this phenomenon is
known to affect ibuprofen crystal growth rates and this model is
applied at the individual crystal level. After that, a seeded batch
crystallizer will be considered, requiring the development of mass
and energy balances for the modeling of the continuous-phase
variables and this macroscopic model is combined with the
microscopic crystal growth model. Finally, the crystal size dis-
tribution will be controlled by a model predictive controller (MPC)
and compared against classical control strategies used in industry.

2. Ibuprofen crystal growth

2.1. Kinetic Monte Carlo modeling and simulation

In the present work, we will use kinetic Monte Carlo (kMC)
simulations in order to model the growth rates of ibuprofen crystal
faces since crystal growth is a non-equilibrium process. Unlike
equilibrium Monte Carlo simulations, kMC simulations add an
element of time by using rate equations representing different
microscopic phenomena. Furthermore, this allows modeling the
dependency of the crystal growth rates on the surface micro-
configuration, in addition to the ability to consider individual
crystals, thereby allowing for a more realistic model for growth
rate dispersion. Ibuprofen has unit cell parameters of a¼14.397 Å,
b¼7.818 Å, c¼10.506 Å, and β¼99.701 with four molecules per
unit cell (Shankland, 1996; Shankland and Wilson, 1997). For this
work, we will consider an N � N lattice with one molecule per
lattice site and periodic boundary conditions. The types of micro-
scopic events we consider in our kMC simulations in order to
model the crystal growth are adsorption, desorption and migra-
tion. Nearest neighbor lists will be used to aid the computational
efficiency when calculating the total rates for each of the micro-
scopic phenomena (Christofides et al., 2008). The rate equations
considered in this work are set up similar to that of Durbin and
Feher (1991) for lysozyme, however, they have been modified to
account for available growth rate data of ibuprofen on the (001)
and (011) faces (Nguyen et al., 2014). Cano et al. (2001) reported
data for all three faces (i.e., (001), (011), and (100)), however, they
conducted their experiments at very low supersaturation
(σ¼0.013) which is much lower than the supersaturation range
of our study (0:68rσr1:20), and thus, we were not able to use
their data for comparison purposes in the present study. If more
data becomes available in the future for the (100) face, then the
dynamics of the (100) face can easily be integrated into the
present kMC simulation model.

2.2. Rate equations

The per-site adsorption rate is defined as

ra ¼ Kaσ; ð1Þ
where Ka is the adsorption coefficient and σ is the relative
supersaturation of the system defined by the following equation:

σ ¼
I
E
� In

E
In

E

; ð2Þ

where I is the ibuprofen content, E is the ethanol content, and In=E
is the solubility. The solubility will be taken from Rashid et al.
(2008, 2011) and is defined as

In

E
¼ 0:497þ0:001026T2; ð3Þ

with temperature T defined in degrees Celsius. Since we consider
an N � N lattice model, the total rate of adsorption is simply

Wa ¼N2ra: ð4Þ
Unlike adsorption, the rates of desorption and migration will be
dependent on the local environment at each lattice site (i.e.,
number of nearest neighbors to this site). When a particle has a
high number of nearest neighbors, a lower desorption/migration
rate will be associated with this site due to the fact that the
particle is more stable in its current location. Likewise, when a
particle has very few or no nearest neighbors, that particle will
have a higher desorption/migration rate. Thus, we will use an
Arrhenius type equation for the per-site rate of desorption, rd,
which is defined as follows:

rdðiÞ ¼ Kdexp � i
Epb
kBT

� �
; ð5Þ

where Kd is the desorption coefficient, i is the number of nearest
neighbors for the current lattice site ranging from zero to four (N,
S, E, W directions), Epb is the binding energy per bond, kB is the
Boltzmann constant, and T is the temperature in Kelvin. In order to
find the total rate of desorption, we sum over the entire lattice.
This can be done in a simple way by taking advantage of the fact
that there are five different types of local environments, rather
than checking each individual lattice site requiring an OðN2Þ
calculation. Thus, the total rate of desorption is

Wd ¼
X4
i ¼ 0

Wdi ; Wdi ¼MirdðiÞ; ð6Þ

where Wdi is the total rate of desorption for lattice sites with i
nearest neighbors and Mi is the number of lattice sites with i
nearest neighbors. Migration works in an analogous way and is
defined as follows:

rmðiÞ ¼ Kmexp � i
Epb
kBT

� �
; ð7Þ

Wm ¼
X4
i ¼ 0

Wmi ; Wmi ¼MirmðiÞ; ð8Þ

where rm is the per-site rate of migration, Km is the migration
coefficient, Wm is the total rate of migration, and Wmi is the total
rate of migration for lattice sites with i nearest neighbors. Lastly,
the amount of time elapsed when an event occurs is defined in the
following way:

Δt ¼ � lnð1�ζÞ=W tot; ð9Þ
where ζ is a uniform random number, i.e., ζ ¼ ½0;1Þ, and
W tot ¼WaþWdþWm.
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