
Please cite this article in press as: Bettencourt, F.E., et al., Parallelization methods for efficient simulation of high dimensional population
balance models of granulation. Computers and Chemical Engineering (2017), http://dx.doi.org/10.1016/j.compchemeng.2017.02.043

ARTICLE IN PRESSG Model
CACE-5746; No. of Pages 13

Computers and Chemical Engineering xxx (2017) xxx–xxx

Contents lists available at ScienceDirect

Computers and Chemical Engineering

j ourna l ho me pa g e: www.elsev ier .com/ locate /compchemeng

Parallelization methods for efficient simulation of high dimensional
population balance models of granulation

Franklin E. Bettencourt, Anik Chaturbedi, Rohit Ramachandran ∗

Department of Chemical & Biochemical Engineering, Rutgers, The State University of New Jersey, 08854 Piscataway, NJ, USA

a r t i c l e i n f o

Article history:
Received 3 October 2016
Received in revised form 20 February 2017
Accepted 22 February 2017
Available online xxx

Keywords:
MPI
OpenMP
Parallel computing
Population balance model
Granulation
Pharmaceutical process design

a b s t r a c t

In order to solve high resolution PBMs to simulate real systems, with high accuracy and speed, a com-
prehensive and robust parallelization framework is needed. In this work, parallelization using just
Message Passing Interface (MPI) and a more advanced method using a hybrid MPI + OpenMP (Open Multi-
Processing) technique, have been applied to simulate high resolution PBMs on the computing clusters,
SOEHPC and Stampede. We study the speed up and the scale up of these parallelization techniques for
different system sizes and different computer architectures to come up with one of the fastest ways to
solve a PBM to date. Parallel PBMs ran approximately 50–60 times faster, when using 128 cores, than
the serial PBMs ran. In this work it is found that hybrid MPI + OMP methods which account for socket
affinities led to the fastest PBM compute times and about 80% less memory than a purely MPI approach.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction and objectives

Particulate processes represent half of all industrial chemical
production (Seville et al., 1997). Some examples of particulate
processes include crystallization (Sen et al., 2014), granulation
(Barrasso et al., 2015), milling (Barrasso et al., 2013a) and biological
processes (Ramakrishna and Singh, 2014). Some important prod-
ucts made using particulate processes are fertilizers, detergents,
aerosols, and pharmaceuticals (Prakash et al., 2013b). Due to the
prevalence of particulate processes there is a great demand for
methods, which can be used to aid in the detailed study and design
of these processes.

The accurate modeling of particulate systems is crucial to
enhance process development, production, equipment design,
optimization, and process control (Ramachandran and Barton,
2010). However, these systems are very difficult to model due to
complex micro phenomena that take place within them (Muzzio
et al., 2002). Population balance models (PBMs) have proven to
be one of the most efficient ways to model these systems while
still capturing much of the physics that takes place in them
(Ramakrishna and Singh, 2014).

Even though PBMs are one of the most efficient (fastest) ways
to model these processes, high resolution and high dimensional

∗ Corresponding author at: 98 Brett Rd, Piscataway Township, NJ 08854, USA.
E-mail address: rohitrr@rci.rutgers.edu (R. Ramachandran).

models can still take days to solve and optimize via the use of
conventional desktop/workstations (Prakash et al., 2013b). High
resolution refers to the classification of particles into a large num-
ber of size classes (i.e. bins) and the division of the granulator
volume into fine segments and high dimensional implies multi-
ple internal/external variables of high resolution grids. To optimize
the design of a process, or to tune a model based on a real system, a
PBM will need to be run tens or hundreds of times creating a great
need for faster simulations. There is also the push to increase PBM
speeds to utilize them for model predictive control (MPC) and feed
forward controllers (Christofides et al., 2007). In the past when sci-
entists have faced computationally intensive problems they would
use many CPUs working together to solve the problem faster, a
method referred to as parallel programming (Wilkinson and Allen,
1997). Using modern computing clusters to evaluate a PBM in
parallel has a great deal of promise. Two applications used for par-
allel programming are Message Passing Interface (MPI) and Open
Multi-processing (OMP) both of which have different strengths and
weaknesses.

1.1. Objectives

The overall objective of this study is to develop more efficient
parallelization methods to reduce the computational times of high-
dimensional PBMs. To that effect, specific objectives are listed
below:

http://dx.doi.org/10.1016/j.compchemeng.2017.02.043
0098-1354/© 2017 Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.compchemeng.2017.02.043
dx.doi.org/10.1016/j.compchemeng.2017.02.043
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:rohitrr@rci.rutgers.edu
dx.doi.org/10.1016/j.compchemeng.2017.02.043

Please cite this article in press as: Bettencourt, F.E., et al., Parallelization methods for efficient simulation of high dimensional population
balance models of granulation. Computers and Chemical Engineering (2017), http://dx.doi.org/10.1016/j.compchemeng.2017.02.043

ARTICLE IN PRESSG Model
CACE-5746; No. of Pages 13

2 F.E. Bettencourt et al. / Computers and Chemical Engineering xxx (2017) xxx–xxx

• MPI and hybrid MPI + OMP methods were used to parallelize a
PBM.

• The performance of the parallelized models was tested using dif-
ferent criteria such as speed up, parallel efficiency, and memory
usage.

• The hybrid MPI + OMP approach was compared to the purely MPI
approach and was also compared with other works in the litera-
ture.

2. Background and motivation

2.1. Population balance models

PBMs have been effectively used to study granulation with a
great deal of accuracy. Granulation is a process for engineering
particles via liquid or solid binders to form larger aggregate gran-
ules with desired traits such as particle size distribution (PSD) and
bulk density. The mechanism of particle growth and breakage are
referred to as rate processes (Barrasso et al., 2013b). From a pro-
cess stand point PBMs are used to simulate how the distribution of
a set of particles, with varying properties, will change due to the
systems rate processes over time (Barrasso et al., 2013b). However
more generally, PBMs evaluate how a population distribution of
entities is effected by its environment over time (Ramakrishna and
Singh, 2014). A general form of population balance model, which
applies to granulation systems, is shown as Eq. (1) below (Barrasso
et al., 2013b),

∂F(x, z, t)
∂t

+ ∂
∂x

[
F(x, z, t)

dx

dt
(x, z, t)

]

+ ∂
∂z

[
F(x, z, t)

dz

dt
(x, z, t)

]
= Rformation(x, z, t)

−Rdepletion(x, z, t) + Ḟin(x, z, t) − Ḟout(x, z, t) (1)

where x is a vector which represents some or all of the character-
istic properties of the particles in the system. Here x is a vector of
internal parameters and is used to represent solid (s), liquid (l), and
gas (g) contents of the particles. Here, z is a vector of external coor-
dinates and represents spatial variance in the system of interest.
F represents the population densities of particles described by the
vectors x and z.

The first term on the left accounts for the rate of change of the
particle number density, with time. The second term from the left,
represents the rate of changes of population densities as the val-
ues of x are changed due to growth terms (dx/dt). In granulation
systems this term would be associated with layering, consolida-
tion, and liquid addition. The third term describes the change in
population density over the physical space of the system due to
movement, dz/dt is the particle velocity. For a continuous system
Fin and Fout are the rates of particle inflow and outflow respectively.
For a batch process Fin and Fout are both set to zero. The Rdepletion

and Rformation describe the net changes due to the rate processes of
nucleation, aggregation, and breakage (Barrasso et al., 2013b).

2.2. Parallelization and parallel computing

2.2.1. Overview
In general parallel computing is taking a problem, breaking

it into parts which can be solved independently, and distribut-
ing those small independent parts to many computers/computing
cores to be evaluated all at the same time, i.e. in parallel (Wilkinson
and Allen, 1997).

2.2.2. Computer architecture
Computing clusters are made up of many nodes connected by

means of some sort of communication network such as InfiniBand,
a type of high speed wireless communication, or Ethernet. Each
node is analogous to a PC (personal computer) in that it has one or
more CPUs (central processing unit), RAM (random access mem-
ory), a motherboard, cooling systems, and possibly GPUs (graphics
processing unit) or co-processors. Commonly CPUs are multi-core
processors, which means they have multiple compute units or
cores, which can carry out independent computations. CPUs come
with their own built-in memory which is very fast and heavily used
for computation which is called the cache. Another important type
of memory is the RAM, CPUs will have a direct connection through
the motherboard’s CPU socket to the RAM. RAM is slower than cache
memory and therefore efficient memory usage, which optimizes
cache utilization and minimizes data transfers from the RAM to the
CPU and from the CPU to the RAM is critical for fast computation.
Large amounts of memory transfer from the RAM to the CPU can
greatly limit the speed at which computation can be performed.
Furthermore, data movement in general is one of the greatest limi-
tations to the performance of a parallel application. For the previous
reasons to maximize performance network message passing should
be minimized and when memory is needed cache utilization should
be optimized.

Computer architectures, are often classified as distributed
memory machines, shared memory machines, or some sort of com-
bination of distributed and shared. Clusters are actually distributed
memory systems (nodes have separate memory from one another)
with shared memory subsystems (the CPU cores on a node can
operate in shared memory mode). Additional architectural features
arise when a node has more than one CPU, most nodes these days
support two CPUs. Even though a node can be operated in shared
memory, the CPUs on the node cannot access all of the memory on
that node at the same speeds. One CPU can access memory that it is
connected to through its socket much faster than it can access mem-
ory stored in a memory bank associated with the other CPU socket
on the node. These kinds of systems are called non-uniform mem-
ory access (NUMA) clusters (Jin et al., 2011). The compute cores of
a single CPU can all potentially access the same RAM at the same
speed since they are all connected to it through the same socket.
Since the cores on a CPU can all draw from the same RAM they
share the memory, and are referred to as a shared memory sys-
tem. Two nodes are distributed machines with respect to another
because the cores on one node do not share the same physical RAM
as the cores on the other node. Due to this the interplay between
computer architecture, software, and computational load distribu-
tion need to be considered when developing a parallel program
(Adhianto and Chapman, 2007).

2.2.3. Parallelization applications and practices
Message passing interface (MPI) and open source message pass-

ing (OMP) are two application program interfaces, which have been
commonly used to parallelize computations. MPI is an application
which is used for distributed memory computing (Jin et al., 2011).
When just MPI is used, all of the CPU cores on all of the nodes have
their own private local memory, meaning core-to-core communi-
cation must be done by explicit message passing even on hardware
that can utilize shared memory (Jin et al., 2011). Large amounts of
message passing can lead to bottlenecking due to message passing
overhead and due to overloading of the bandwidth/communication
network (Jin et al., 2011). Using only MPI results in each core need-
ing its own copy of all variables used for the computation it is
performing, resulting in inefficient memory usage due to large
numbers of duplicate variable storage. Even on shared memory
architecture systems MPI will operate each core as a distinct unit
with its own private memory.

dx.doi.org/10.1016/j.compchemeng.2017.02.043

Download	English	Version:

https://daneshyari.com/en/article/6595082

Download	Persian	Version:

https://daneshyari.com/article/6595082

Daneshyari.com

https://daneshyari.com/en/article/6595082
https://daneshyari.com/article/6595082
https://daneshyari.com/

