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The paper has two goals:

(1) It presents basic ideas, notions, and methods for reduction of reaction kinetics models: quasi-steady-state, quasi-equilibrium,

slow invariant manifolds, and limiting steps.

(2) It describes briefly the current state of the art and some latest achievements in the broad area of model reduction in chemical

and biochemical kinetics, including new results in methods of invariant manifolds, computation singular perturbation,

bottleneck methods, asymptotology, tropical equilibration, and reaction mechanism skeletonization.
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Introduction
Three eras (or waves) of chemical dynamics can be

associated with their leaders [1]: the van’t Hoff wave

(the first Nobel Prize in Chemistry, 1901), the Semenov–

Hinshelwood wave, and the Aris wave. The problem of

modelling of complex reaction networks was in the focus of

chemical dynamics research since the invention of the

concept of ‘chain reactions’ by Semenov and Hinshel-

wood (the shared Nobel Prize in Chemistry, 1956). Aris’

activity was concentrated on the detailed systematization

of mathematical ideas and approaches for the needs of

chemical engineering. In the engineering context, the

problem of modelling of complex reactions became even

more important.

A mathematical model is an intellectual device that works

[2]. Creation of such working models is impossible with-

out the well developed technology of model reduction.

Therefore, it is not surprising that the model reduction

methods were developed together with the first theories

of complex chemical reactions. Three simple basic ideas

have been invented:

� The Quasi-Equilibrium approximation or QE (a fraction

of reactions approach their equilibrium fast enough

and, after that, remain almost equilibrated).

� The Quasi Steady State approximation or QSS (some of

species, very often these are some of intermediates or

radicals, exist in relatively small amounts; they reach

quickly their QSS concentrations, and then follow, as a

slave, the dynamics of these other species remaining

close to the QSS). The QSS is defined as the steady

state under condition that the concentrations of other

species do not change.

� The limiting steps or bottleneck is a relatively small part

of the reaction network, in the simplest cases it is a

single reaction, which rate is a good approximation to

the reaction rate of the whole network.

More precise formal discussion is presented in the fol-

lowing sections.

In 1980s–1990s the model reduction technology was

enriched by several ideas. Most important of them are:

the Method of Invariant Manifolds (MIM) theory and

algorithms [3�,4�], the special Intrinsic Low Dimensional

Manifold (ILDM) method for approximation of slow

motion [5�], the Computational Singular Perturbation

(CSP) method for the iterative approximation of both

slow and fast motions [6�], and the sensitivity analysis of

complex kinetic systems [7�].

Development of lumping analysis was important for

general understanding of model reduction in chemical

kinetics [8�]. The lumped species is considered as a linear

combination of the original ones. These combinations are

often guessed on the basis of known kinetic properties

and can be improved by iterative methods and observer
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theory. The standard examples are: the lumped species

are identified as the sums of species in selected groups (a

very popular approach with many practical applications, e.

g., [9]); the lumped species are the numbers of links and

structural fragments of various types and in different

states (this approach has many applications, from petro-

chemistry [10] and modelling of intracellular networks

[11] to the Internet dynamics [12�]).

The main achievements of this period (1980s–1990s) in

model reduction were summarized in several books and

surveys [13,14,15�,16].

The technological elaboration of these ideas and assimila-

tion of those by the modelling practice took almost thirty

years. Much efforts have been invested into computational

improvements and testing with the systems of various

complexity. Some new ideas were proposed and developed.

The QE, QSS, MIM, and CSP methods can be applied to

any differential equation with explicit or implicit (hid-

den) separation of time. They use the structure of reac-

tion network as a tool for creation of kinetic equations. In

the classical methods, only the limiting step approach (the

bottleneck method) works directly with the reaction

graph. Recently, the model reduction methods which

use the structure of the reaction network, were developed

far enough and attract many different techniques, from

sensitivity analysis to algebraic geometry and tropical

mathematics.

The first step in the next section is a ‘step backwards’, a

brief introduction of the classical methods. Then we

move to modern development.

QE, QSS, MIM and CSP in ODE framework
Formally, the standard models of chemical kinetics are

systems of Ordinary Differential Equations (ODE). The

general framework looks as follows. Let U be a bounded

domain in Rn. Assume that vector fields Ffast(x) and Fslow(x)
are defined and differentiable in a vicinity of U (in real

applications these vector fields are usually analytical, or

even polynomial or rational). Let U be positively invariant

with respect to Ffast(x) and Fslow(x). Consider dynamical

system with the explicit fast–slow time separation:

dx

dt
¼ FslowðxÞ þ 1

e
FfastðxÞ; ð1Þ

where e > 0 is a small parameter. The fast subsystem is

dx

dt
¼ FfastðxÞ: ð2Þ

Here, time t is used to stress that this is the ‘fast time’,

t = t/e. If the fast system (1) converges to an

asymptotically stable fixed point in U and has no fixed

points on the border of U then for sufficiently small e the

slow vector field becomes practically invisible in the

dynamics of (1), that is there is no slow dynamics.

Let the fast system (2) be neither globally stable nor

ergodic in U. Assume that it has the conservation laws bi(x)
(i = 1, . . . , k) and for each x0 2 U the fast system on the

set bi(x) = bi(x0) converges to a unique stable fixed point

x*(b), where b is the vector of values bi(x). Then the slow

system describes dynamics of conservation laws b:

db

dt
¼ Dbx¼x�ðbÞ½Fslowðx�ðbÞÞ�; ð3Þ

where Dbx¼x�ðbÞ is differential of b(x) at the point x*(b). For

linear conservation laws Db = b and the slow equations

have the simple form

db

dt
¼ b½Fslowðx�ðbÞÞ�: ð4Þ

The QE manifold is parametrized by the conservation

laws with functions x*(b). It should be stressed that the

slow equations in their natural form (3) and (4) describe

the dynamics of the conservation laws b and not the

dynamics of the selected ‘slow coordinates’. The problem

of projection onto slow manifold is widely discussed

[17�,18,19�]. According to the Tikhonov theorem, dynam-

ics of the general system (1) from an initial state x0 under
the given assumptions can be split in two stages: fast

convergence to the QE manifold x*(b) (the initial layer,
convergence to a small vicinity of x*(x0)), and then slow

motion in a small vicinity of the QE manifolds.

The QE assumption is the separation of reactions onto slow

and fast: Fslow includes all the terms from the slow reactions,

Ffast includesall thetermsfromthefast reactionsandtheslow

manifold x*(b) consists of equilibria of the fast reactions

parametrized by the conservation laws. The

‘thermodynamic’ behaviour of fast reactions (convergence

to equilibrium, which is unique for any given values of the

conservation laws) is essential to application of the Tikhonov

theorem. Slow reactions can be extended by including exter-

nalfluxes, they donotchangethe asymptotic form(3)and (4).

Combining of fast subsystems from the fast reactions is so

popular [20] that a special warning is needed: there exists

another widely used approximation without separation of

reactions into fast and slow (see QSS below).

It should be stressed that the physical and chemical

nature of the convergence to equilibrium of fast reactions

may vary. It may follow from thermodynamic conditions

like principle of detailed balance or semi-detailed bal-

ance. It may have also completely algebraic nature. For
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