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a b s t r a c t

The goal of the present work is to assess the ability of Eulerian moment methods to reproduce the physics

of two-way coupled particle-laden turbulent flow systems. Previous investigations have been focused on

effects such as preferential concentration, and turbulence modulation, but in regimes in which turbulence is

sustained by an imposed external forcing. We show that in such regimes, Eulerian methods need resolutions

finer than nominal Kolmogorov scale in order to capture statistics of particle segregation, but gas and disperse

phase velocity variances can be captured with resolutions comparable to the Kolmogorov length. The work

is then extended to address the question whether Eulerian methods are suitable in scenarios in which the

continuum field of interest (temperature or momentum) is itself primarily driven by particles. To this end

we have extended our analysis to the problem of turbulence driven by heated particles (Zamansky et al.

PoF 2014) and have assessed capabilities of Eulerian methods in capturing particle segregation, as well as

statistics of the temperature and velocity fields. Separate investigations are developed for cases with and

without buoyancy driven turbulence. For each case corresponding Lagrangian calculations are developed

and convergence of statistics with respect to the number of particles is established. Then the statistically-

converged Lagrangian and Eulerian results are compared. Results show that accurate capture of segregation

by the Eulerian methods always requires resolutions much higher than the nominal Kolmogorov scale. In

scenarios for which a continuum phase is forced by particles, results from Eulerian methods show some

sensitivity of predicted continuum statistics to the mesh resolution. This sensitivity was found to be largest

for the case of a temperature field forced by hot particles, but without presence of buoyancy. In this case a

Eulerian method with nominal Kolmogorov resolution was found to be insufficient for capture of temperature

statistics. When additional coupling between particles and continuum phase is introduced by including the

buoyancy effects, this sensitivity is suppressed in the temperature field, but some sensitivity to the Eulerian

mesh resolution were detected in the momentum fields.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Turbulent particle- or droplet-laden flows play a key role in nu-

merous applications, including natural processes such as droplet

clouds, dust storms, and protoplanetary disks, as well as indus-

trial applications such as fuel sprays in internal combustion engines,

fluidized beds, particle-based solar receivers, and pharmaceutical

sprays. Understanding the key processes underlying the coupled dy-

namics of particles and fluids in such systems requires development
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of models capable of reproducing their physics. In most of these sys-

tems the particle-laden mixture is under turbulent conditions and

can induce preferential concentration in the particle field (Squires

and Eaton, 1991b; Elgobashi and Truesdell, 1992; Eaton and Fessler,

1994; Fessler et al., 1994): inertial particles are ejected from vor-

tex cores and tend to accumulate in low vorticity zones. This phe-

nomenon is characterized by the particle Stokes number, which is the

ratio between the particle inertial relaxation time to the Kolmogorov

time scale of the turbulence (Eaton and Fessler, 1994).

Previous investigations indicate that preferential concentration is

strongest for systems with Stokes number of order unity (Eaton and

Fessler, 1994). Very small particles with small Stokes number es-

sentially follow the flow streamlines, and cannot be effectively cen-

trifuged outside of vortex zones; in the limit of very large Stokes

number, the particle phase is hardly influenced by the flow field and
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thus effects of preferential concentration is suppressed. Preferential

concentration plays a key role in various processes including en-

hancement of particle–particle collision (e.g. leading to faster parti-

cle agglomeration or drop coalescence Sundaram and Collins, 1997;

Wang et al., 1998) and turbulence modulation (Gore and Crowe, 1989;

Elgobashi and Truesdell, 1993; Fessler et al., 1994; Boivin et al., 1998,

Pouransari and Mani). In some scenarios preferential concentration

plays a primary role even in generation and sustaining turbulence

(Zamansky et al., 2014; Mizukami et al., 1992). Therefore, when it

comes to modeling of particle-laden flow phenomena, one key con-

cern is the capability of the model to capture preferential concentra-

tion.

Early numerical models attempted to couple Lagrangian parti-

cle methods with traditional Eulerian fluid turbulence simulations

(Riley and Patterson, 1974; Elgobashi and Truesdell, 1992; Squires and

Eaton, 1991a; 1991b). In the most simple limit, trajectory of the par-

ticles can be determined by use of the Stokes drag formula given the

following assumptions:

• The particles are smaller than the Kolmogorov length scale (d <

η): particle-resolved DNS is not necessary, and a Point-Particle ap-

proximation can be adopted Maxey and Riley (1983).
• The density ratio between the particles and the gas phase is large

(ρp > >ρg): the drag force is dominant over all other forces

(added-mass, history, lift).
• The Reynolds number of the particles is smaller than one (Rep <

1): the Stokes drag formulation can be used, i.e the momentum re-

laxation time of the particle is τp = ρpd2/18μg, where ρ , μ, and d

denote density, viscosity, and particle diameter respectively, and

subscripts “p” and “g” represent particle, and fluid (gas) respec-

tively.
• Dilute regime: the volume fraction is small (αp < 10−3) and thus

particle-particle collisions would have negligible impact on pri-

mary dynamics.
• Small mass loading(αpρp/ρg < 10−2): the mass ratio is small

enough to avoid momentum two-way coupling between the two

phases.
• Monodisperse solid spherical particles: all particles have the same

size that does not change with time.

We add to this list another assumption relevant to a subclass of

cases with heat transfer:
• Negligible heat capacity for the particle (cp, particle � cp): the heat

absorbed by the particles is immediately transferred to the gas

phase: there is no need to solve the temperature equation of the

particles.

Under such conditions Lagrangian point particle methods have

been tested against experiments and were shown to be able to

capture the preferential concentration phenomena fairly accurately

Squires and Eaton (1991a); Elgobashi and Truesdell (1992). In a typi-

cal simulation, the number of numerical particles would be equal to

the number of physical particles. Following the aforementioned sim-

plifications, the equations for the Lagrangian particles are limited to

their position Xp and velocity Vp:

dXp

dt
= Vp, (1)

dVp

dt
= ug(t, Xp) − Vp

τp
, (2)

where τp = ρpd2

18μg
is the relaxation time of the particles and ug is the

gas phase velocity.

In the context of mesoscopic DNS simulations, the Lagrangian par-

ticle tracking is the reference. However, it still has some limitations.

First, if one is aiming to capture the statistics of the disperse, e.g. the

local Number Density Function, NDF (number of particles per unit

volume), many realizations are needed to develop converged statis-

tics. Additionally, in the limit that the average number of particles per

CFD cell is large, Lagrangian methods can become very expensive due

to extreme computing clock time needed to track all particles as well

as complexities associated with the computational load balancing on

parallel machines (Garcia, 2009).

Eulerian particle methods have been explored as an alternative to

the Lagrangian particle tracking method (Druzhinin and Elghobashi,

1998; Ferry and Balachandar, 2001; 2002; Kaufmann et al., 2008;

Masi and Simonin, 2014; Masi et al., 2014; de Chaisemartin, 2009;

Laurent et al., 2012; Vié et al., 2015). The goal of such methods is to

solve the statistics of the disperse phase, i.e. the NDF. Inspired by ap-

proaches in kinetic theory of gases (Chapman and Cowling, 1939),

the NDF f (t, x, vp) is defined as the number of particles per unit

volume, with certain velocity, vp, averaged over many realizations.

This NDF satisfies a Population Balance Equation (PBE) (referred to as

the Williams–Boltzmann equation in the context of sprays (Williams,

1958)):

∂ f

∂t
+ vp,i

∂ f

∂xi

+ ∂

∂vp,i

(
ug,i − vp,i

τp
f

)
= 0. (3)

For an sufficiently large number of realisations of Eq. (2), Eq. (3) is the

equivalent of Eq. (2), but written in Eulerian framework. However,

to avoid to solve the NDF in the full phase space, moment methods

are develop (see for instance Simonin, 1996), which aim to integrate

the PBE over the velocity space to obtain equation on moments, i.e.

integrals over the velocity space. The resulting moment equations are

(Simonin, 1996)):

∂C

∂t
+ ∂Cup, j

∂x j

= 0, (4a)

∂Cup,i

∂t
+

∂C
(
up,iup, j + σi j

)
∂x j

= C
ui − up,i

τp
, (4b)

where C(t, x) is the local number density of the particles, up, i(t, x) is

the mean velocity of the particles at the position x, and σ ij(t, x) is the

covariance matrix of the velocity distribution:

C =
∫

f (t, x, vp)dvp, (5)

up,i = 1

C

∫
vp,i f (t, x, vp)dvp, (6)

σi j = 1

C

∫ (
vp,i − up,i

)(
vp, j − up, j

)
f (t, x, vp)dvp. (7)

The system of Eq. (4) needs a closure for the covariance matrix of

the NDF, based on the underlying physics. A schematic of the possi-

ble closure assumptions is depicted in Fig. 1. The two quantities that

drive the choice of the model are the particle Stokes number Stk based

on the Kolmogorov time scale and the volume fraction (Laurent et al.,

2012). These two quantities control the broadness and shape of the

NDF in the velocity space. The Stokes number indicates the occur-

rence of particle trajectory crossings, i.e. the possibility of multival-

ued particle velocity at a given space-time instant. For small Stokes

number, the particles dominantly follow the fluid and deviation of

their velocity from fluid velocity is perturbative (but could be suffi-

cient to induce considerable preferential concentration). It has been

shown that for Stk < 1 a monokinetic assumption, that is all parti-

cles at the same location have the same velocity (Laurent and Mas-

sot, 2001), is indeed valid (Balachandar and Eaton, 2011), i.e. only

one velocity can describe the particle field per location in physical

space. In this range, the covariance matrix can be neglected, and

Eq. (4) is closed without any modeling requirement. As classified by

Balachandar (2009), three approaches of increasing complexity exist

in this range of Stokes number:
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