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a b s t r a c t

This work compares several models for fluid flow through micropillar arrays to numerical simulations
and uses them to optimize pillar dimensions for maximum fluid flow in a heat pipe application. Micro-
pillar arrays are important for controlling capillary flow in microfluidic devices, and array permeability is
a key parameter in determining fluid flow rate. Several permeability models are considered, including the
Brinkman equation, numerical simulations, inverse reciprocal sums of a cylinder bank and open flow over
a flat plate, and an analytical solution developed by the authors derived from a 2-dimensional velocity
profile with appropriately varying boundary conditions. The comparison seeks to identify the models that
are reliable over a wide range of porosities yet flexible enough to accommodate new pillar configurations.
Numerical simulations of pillar permeability are the most desirable due to their accuracy. For pillars
arranged in a square pattern, the 2-D analytical solution proposed in this study performs well at short
pillar heights while the Brinkman equation is more accurate at tall pillar heights. Therefore, a hybrid
model is formulated that uses the 2-D solution for h/d 6 5 and the Brinkman model for h/d > 5. The 2-
D solution, the Brinkman equation using specifically the permeability derived by Tamayol and Bahrami
(2009), and numerical simulations are easily adapted to alternative pillar arrangements. A comparison
of these models for pillars arranged in a rectangular pattern demonstrated that the authors’ proposed
solution is an excellent match to numerical results. These findings are applied to capillary fluid flow in
heat pipes to explore the effects of pillar spacing, diameter, and height on the maximum fluid flow rate
through the wick. At a given height aspect ratio, there is an optimum pillar spacing that balances the vis-
cous losses and driving capillary pressure such that the flow rate reaches a maximum. In addition, the
flow rate is increased by increasing pillar height if the pillar spacing is maintained at the corresponding
optimum point.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Microscale pillar arrays have received extensive attention due
to their applicability to a wide range of technologies. Lab-on-a-chip
systems have used pillar arrays for high-performance liquid chro-
matography (de Beeck et al., 2012; Song et al., 2012), dielectropho-
resis (Cui and Lim, 2009), and isolating cancer cells (Nagrath et al.,
2007; Sheng et al., 2012). Thermal management is another area of
interest, where pillars have recently been studied for use in a flat
plate heat pipe (Lips et al., 2010; Nam et al., 2010; Lefevre et al.,
2012). One of the key parameters of interest for these technologies
is the macroscopic rate of fluid flow through the array. The flow
rate is dictated by the balance of the permeability and capillary
forces of the pillar array. Small pore radii result in large driving
capillary pressures but decrease permeabilities. Therefore, the

ability to accurately predict the permeabilities of pillar arrays is
crucial to their design and utilization.

Sangani and Acrivos (1982) studied the viscous permeability of
square and hexagonal cylinder arrays at high and low porosity lim-
its. Drummond and Tahir (1984) modeled flow around long fibers
using a cell approach to find permeabilities at high porosities.
Gebart (1992) used the lubrication approximation for transverse
flow through square and hexagonal cylinder arrays to find an
expression for the permeability at low porosities. Yazdchi et al.
(2011) compiled a summary of cylinder array permeability models
and compared them to finite element simulations, then created a
hybrid equation valid for all porosities based on Gebart (1992)
and Drummond and Tahir (1984). Yazdchi et al. (2012) later
extended the finite element simulations to investigate random
cylinder arrays. Tamayol and Bahrami (2009) and Zhang et al.
(2010) used cell approaches to model actual pillar arrays as
opposed to long cylinder arrays. Xiao and Wang (2011) and Byon
and Kim (2011) used the Brinkman equation for flow through
porous media to find an analytical solution for permeability.
Tamayol et al. (2013) calculated the pressure drop for flow through
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a microchannel filled with a pillar array. Their method used the
Brinkman equation and resulted in a hyperbolic solution. Finally,
Srivastava et al. (2010) used numerical simulations to develop a
predictive equation for the volumetric flow rate of liquid through
a limited range of pillar geometries, and Ranjan et al. (2012) used
numerical simulations to develop correlations for pillar array per-
meability as a function of porosity for different pillar shapes.

These models have yet to be compared side-by-side. Srivastava
et al. (2010), Ranjan et al. (2012), and Yazdchi et al. (2011) demon-
strated the use of state-of-the-art numerical simulations which
give exact predictions of pillar systems. In addition, the models
of cylinder banks by Gebart (1992), Drummond and Tahir (1984),
and Sangani and Acrivos (1982) are excellent analytical solutions
for the porosity regimes in which they were developed. Alterna-
tively, Tamayol and Bahrami (2009) and Zhang et al. (2010) pro-
posed approximate analytical solutions which are more easily
manipulated to reflect changes in pillar geometry. The design of
micropillar wicks requires a robust model that applies to all poros-
ities, yet is flexible enough to allow rapid testing of new ideas. This
study seeks to identify such a model from the current approaches.

Since the permeability of a pillar array is solely a function of pil-
lar geometry, researchers can customize flow rate predictions to
their specific application with the capillary pressure drop. Some
applications require fluid to move as a liquid propagation front,
others as a continuous flow. Liquid front propagation technologies
have pressure drops that relate to surface energies and dynamic
meniscus shapes (Ishino et al., 2007; Xiao et al., 2010; Xiao and
Wang, 2011). Continuous flow technologies have pressure drops
that rely primarily on the effects of pillar geometry on meniscus
shape (Peterson, 1994; Lips et al., 2010; Ranjan et al., 2012). Here
we are interested in the particular application of flat plate heat
pipes (FPHP) with microstructured wicks for thermal management.

Heat pipes are cooling devices that utilize passive capillary fluid
flow through internal wicking structures to remove heat via a
phase change process in a closed system. Wang and Bar-Cohen
(2007) concentrated on the need for on-chip cooling technologies
to combat hot spots on silicon chips. Therefore, small size and
uncomplicated operation is desirable for electronic cooling. Micro-
pillar arrays have the potential to contribute in this area, but the
majority of recent modeling work has focused on liquid front prop-
agation technologies. Lips et al. (2010) characterized the liquid–va-
por interface of fluid flow through 2-D wicking structures in FPHP
with confocal microscopy, and Lefevre et al. (2012) expanded the
work to include meniscus curvature measurements along the
length of the heat pipe. One of their wicking structures consisted
of rectangular micropillars arranged in a square pattern. Sharratt
et al. (2012) investigated the phase change heat transfer perfor-
mance of copper micropillars arranged in several different geomet-
ric designs. We seek to optimize pillar array dimensions to achieve
maximum fluid flow through a micropillar wick for heat pipe
applications.

2. Fluid flow models

Imagine an array of pillars with diameter d, height h, edge-to-
edge distance in the y-direction w, edge-to-edge distance in the
x-direction s, and center-to-center distance in the x-direction
l = w + d (Fig. 1). For a square pattern, w = s. Fluid flow occurs in
the x-direction, and the liquid interface at h is assumed to be flat.
A few recent studies have included the effects of meniscus shape
on permeability (Xiao et al., 2010; Xiao and Wang, 2011; Byon
and Kim, 2011), but the interface was kept flat in this study to com-
pare across a broader range of modeling work. This study will only
consider an array unbounded by macroscopic sidewalls, but
Vangelooven and Desmet (2010) have pointed out that the side-

walls of a bounded array must be carefully placed to avoid discrep-
ancies between the bulk velocity and the edge velocity.

If the pressure gradient is assumed to be constant and is applied
only in the x-direction, the Darcy fluid flow model states that the
superficial fluid velocity U is related to the pressure gradient across
the system dP/dx such that

U ¼ � dP
dx

K
l
; ð1Þ

where K is the sample permeability and l is the fluid viscosity. The
permeability is commonly non-dimensionalized by the pillar diam-
eter, such that K⁄ = K/d2. Thus, calculating the mass flow rate
through a micropillar array requires knowledge of the dimension-
less permeability.

2.1. Cylinder bank and flat plate combination

One approach to calculating the permeability through a micro-
pillar array is to combine the permeability of an unbounded cylin-
der bank with the permeability of a flat plate by assuming a
constant superficial velocity through the array and utilizing the
fact that total pressure drop is equal to the sum of the individual
component pressure drops:

U ¼ � dPcyl

dx

� �
Kcyl

l
¼ � dPplate

dx

� �
Kplate

l
ð2Þ

dPtotal

dx

� �
¼ dPcyl

dx

� �
þ dPplate

dx

� �
: ð3Þ

Solving Eq. (2) and (3) simultaneously gives

K�total ¼
1

K�cyl
þ 1

K�plate

 !�1

; ð4Þ

which weights each individual permeability such that the total per-
meability automatically reflects the dominance of either the flat
plate or cylinder bank characteristics of the array. The permeability
of a flat plate is derived from steady, laminar flow driven by a con-
stant pressure gradient and having no-slip and free surface bound-
ary conditions at z = 0 and z = h, respectively (Deen, 1998):

Kplate ¼
1
3

h2�: ð5Þ

The 2-dimensional porosity, � (Eq. (6)), accounts for the fact that Eq.
(1) refers to superficial velocity.

� ¼ 1� p
4

d2

l2 : ð6Þ

Since d is the parameter chosen for non-dimensionalization, Eq. (7)
gives the final result for K�plate even though d does not have a direct
physical meaning for a plate without pillars.
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Fig. 1. Micropillar unit cell with geometric parameters. Fluid flow is in the x-
direction.
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