
Finite-volume droplet trajectories for icing simulation

T.C.S. Rendall ⇑, C.B. Allen
Department of Aerospace Engineering, University of Bristol, Bristol BS8 1TR, UK

a r t i c l e i n f o

Article history:
Received 17 November 2012
Received in revised form 22 August 2013
Accepted 23 August 2013
Available online 6 September 2013

Keywords:
Particle tracking
Icing
CFD
Droplet motion

a b s t r a c t

During a Lagrangian icing simulation a large number of droplet trajectories are calculated to determine
the water catch, and as a result it is important that this procedure is as rapid as possible. In order to arrive
at a method with minimum complexity, a finite-volume representation is developed for streamlines and
extended to incorporate the equations of motion for a droplet, with all cells being crossed in a single
timestep. However, since cells vary greatly in size, the method must be implicit to avoid an awkward sta-
bility restriction that would otherwise degrade performance. An implicit method is therefore imple-
mented by carrying out iterations to solve for the crossing of each CFD cell, so that the droplet motion
is tightly coupled to the underlying flow and mesh. By crossing every cell in a single step, and by using
the mesh connectivity to track the droplet motion between cells, any need for costly searches or contain-
ment checks is eliminated and the resulting method is efficient. The implicit system is solved using func-
tional iteration, which is feasible for the droplet system (which can be stiff) by using a particular
factorisation. Stability of this iteration is explored and seen to depend primarily on the maximum power
used in the empirical relationship for droplet drag coefficient CD = CD(Re), while numerical tests confirm
the theoretical orders of accuracy for the different discretisations. Final results are validated against
experimental and alternative numerical water catch data for a NACA 23012 aerofoil.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Calculation of droplet or solid particle trajectories through a
CFD mesh is a problem that arises across a wide range of disci-
plines, ranging from icing simulation, to combustion modelling,
chemical engineering, fire sprinkler systems and haemodynamics.
Modern techniques apply CFD to calculate the flow field surround-
ing droplets, and then integrate Newton’s second law to determine
the trajectory. However, this means using the flow field informa-
tion (which usually consists of just the velocity, but it might also
include temperature or other flow parameters), which is Eulerian
in nature, within a Lagrangian calculation, and hence requires a
method of tracking.

Water catch calculations used in icing analysis may be
conducted in either a Lagrangian (Ruff and Berkowitz, 1990) or
Eulerian (Beaugendre et al., 2003; Bourgault et al., 1997) frame
of reference. The Lagrangian approach is more common, and re-
quires droplet trajectories to be calculated, whereas the Eulerian
approach solves transport equations to determine the water catch
on the surface of the object directly. For small droplets an Eulerian
frame of reference is likely to be superior, but for larger droplets
the assumption of a volume weighted droplet quantity breaks

down. Larger droplets are also likely to exhibit behaviour that is
more easily expressed in a Lagrangian frame, such as splashing,
and regulatory bodies will soon require certification under these
conditions. This work describes methods to perform trajectory cal-
culations for the Lagrangian approach.

For these computations the form of the underlying flow solution
is very important. If it is a potential flow solution (Ruff and Berko-
witz, 1990), which is often used for a rapid analysis, then it is
straightforward to evaluate the flow velocity at any arbitrary posi-
tion from the velocity potential. In comparison, a CFD volume
mesh (Potapczuk, 1992) requires the droplet to be tracked as it
passes through the mesh from cell to cell. An interpolation within
each cell for the flow velocity may be used for increased accuracy.
It is expected that as the development and usage of CFD progresses,
together with a need to analyse more elaborate shapes, tracking
droplets through a volume mesh will become more common in
icing calculations.

Tracking a massless particle (to give a streamline) through a fi-
nite-volume mesh is in principle straightforward, but requires an
efficient method for finding which CFD cell in a mesh contains
the particle, as many millions of droplets may ultimately need to
be tracked. The level of complexity is increased by introducing
the droplet equations of motion, as these can come with timestep
stability restrictions, and for efficiency it is necessary to resolve
these numerical limitations with the method of tracking. It is this
combination of tracking and numerical integration that is of

0301-9322/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2013.08.007

⇑ Corresponding author. Tel.: +44 117 331 5639.
E-mail address: thomas.rendall@bristol.ac.uk (T.C.S. Rendall).

International Journal of Multiphase Flow 58 (2014) 185–194

Contents lists available at ScienceDirect

International Journal of Multiphase Flow

journal homepage: www.elsevier .com/ locate / i jmulflow

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmultiphaseflow.2013.08.007&domain=pdf
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2013.08.007
mailto:thomas.rendall@bristol.ac.uk
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2013.08.007
http://www.sciencedirect.com/science/journal/03019322
http://www.elsevier.com/locate/ijmulflow


principal interest here; for the tracking method to work, every cell
must be crossed in an integer number of timesteps (here, always
one), which means the integrator must be able to handle any time-
step, even if the system is stiff.

This work starts by describing the simplest possible way to rep-
resent streamlines on a finite-volume mesh, before incorporating
the equations of motion to give a trajectory. The final result is a
method that is fast, adaptive to the volume mesh resolution and
without timestep restrictions. The basic methods are first and sec-
ond order accurate in space and time, but these orders may be in-
creased at the expense of more restrictive stability bounds if
needed, and alternative integrators can also be fitted in the face
intersecting framework.

2. Implicit mesh dependent streamlines and droplet
trajectories

The nonlinear ordinary differential equations that describe the
trajectory of a water droplet are usually solved by a numerical
integration technique. Many methods use an explicit single or
multi-stage approach, with Runge–Kutta and predictor/corrector
techniques being common, although for the stiff equations that re-
sult from low mass particles integrators designed for stiff systems
are preferred. Nonlinearity arises both from the dependence of the
droplet drag coefficient on the Reynolds number, and the link to
the dynamic pressure of the relative flow speed between the drop-
let and the air.

The choice between an explicit and an implicit integration
scheme is fundamental (Kim and Elangovan, 1986). An explicit
scheme imposes a stability restriction on the timestep, while an
implicit scheme is left largely unfettered in this regard and the
timestep only needs to be guided by accuracy considerations. An
implicit droplet scheme is comparatively much simpler than an
implicit CFD scheme, and requires in the simplest case only the
solution of a single nonlinear equation for each timestep. The cost
and difficulty of simulating large numbers of trajectories of small
droplets has been noted previously, both by Kim and Elangovan
(1986) who suggested a switch towards semi-implicit schemes,
and Caruso (1993) who advocated parallel processing of
trajectories.

2.1. Streamlines

The operations required to calculate a droplet trajectory are clo-
sely related to those used to find a streamline, so for simplicity this
case shall be considered first. Many streamline methods involve
using cell neighbours to compute velocity interpolations, and then
integrate the velocity vector to find the streamline, usually taking
multiple integration steps within a cell. Although the apparent
accuracy of this approach may appear good (with a large number
of steps in a cell giving a smoothly curving streamline) the actual
accuracy still depends on the underlying flow velocity. The flow
equations are typically solved using a finite-volume (FV) discreti-
sation, and this uses a constant velocity within a cell (often with
a gradient based face reconstruction procedure), so although an at-
tempt to increase the accuracy of the streamline beyond that of the
solver may be visually pleasing it is not always based on the under-
lying discretisation. Further, it is clear that there exists a consistent
‘finite-volume’ streamline that uses the cell velocities and no other
information. It is this fundamental FV streamline description that
presents an efficient and accurate way of tracing streamlines and
trajectories.

A FV streamline consists only of straight line segments pointing
along the direction of the flow velocity in each cell (note that if the
containment cell velocity is taken, the method is first order), while

points along the streamline are defined by the intersections of
these segments with cell faces, as illustrated in Fig. 2. Importantly
FV streamlines do not require integration of any differential equa-
tion to be traced out. They are defined only by the discrete flow
solution and the mesh, i.e. they are geometrical in nature rather
than mechanical. Streamlines may also be considered as the trajec-
tories of massless particles; since these particles have no mass,
they accelerate instantaneously to match the flow velocity in any
cell of the mesh. This instantaneous acceleration leads to the dis-
continuities in velocity between cells.

The process of finding a streamline in this manner is simple and
uses only the connectivity information already required by the
flow solver. Two kinds of connectivity are required: (1) edge-cell
indexing and (2) cell-edge indexing. Edge-cell indexing allows
the neighbouring cells (or boundary conditions) of a particular
edge to be found, while cell-edge indexing allows the neighbouring
edges of a particular cell to be found. The data required for edge-
cell connections are already used by the flow solver, so no work
is required here, while cell-edge connectivity may be determined
exactly from the edge-cell data in a simple preprocessing step.

With this connectivity in hand, the streamline is found by first
placing a seed point within a known cell. Intersection points of the
velocity ray from this seed point to the infinite planes of all the cell
faces are then found, with the nearest one that lies in the positive
direction along the velocity vector finally being chosen as the cor-
rect point. Once the exit edge has been found, the next seed point is
this intersection point, and the next velocity ray is determined by
the velocity in the cell on the other side of the edge. Alternatively,
the other side of the edge may be a boundary, in which case the
intersection point is recorded and the process stops. Exactly one
step is therefore required per cell, and the cost of finding a stream-
line is proportional to the mesh size; the only searching that is
needed takes place over the boundary edges of a cell and since this
is usually a small number (3–6) that is roughly constant within the
mesh this does not add a significant searching expense. Visually it
can be seen that a number of postprocessing tools, commercial and
in-house, use this technique.

The complete process for a streamline is:

1. Pick a starting point in a known cell.
2. Using the cell-edge connectivity calculate all intersections

between the velocity vector for that cell with the faces of that
cell.

3. Select the nearest intersection point in the positive direction
along the velocity vector as the next point for the streamline.
Alternatively, select negative intersections for the upwind
streamline.

4. Use the edge-cell connectivity to locate the cell on the other
side of this edge, or terminate if this is a boundary edge, and
then move into this cell.

In a small number of cases the intersection between the velocity
vector and a face may be extremely flat. In this case, roundoff er-
rors can cause intersections in the positive direction to be mistak-
enly found as negative. To escape this error the method of
Haselbacher et al. (2007) is applied; the actual point of intersection
is left unchanged and the streamline moved into the cell on the
other side of the edge in question.

Overall this method achieves first order accuracy if the cell flow
velocity is used to intersect the faces. This can be improved to sec-
ond order if a gradient extrapolation is used to the face, so that

vf ¼ vc þrv � d ð1Þ

where d is the vector from the cell centre to the face intersection
point. The consistent velocity to use to intersect the faces of the cell

186 T.C.S. Rendall, C.B. Allen / International Journal of Multiphase Flow 58 (2014) 185–194



Download English Version:

https://daneshyari.com/en/article/667246

Download Persian Version:

https://daneshyari.com/article/667246

Daneshyari.com

https://daneshyari.com/en/article/667246
https://daneshyari.com/article/667246
https://daneshyari.com

