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a b s t r a c t

The angular velocity and the lift force on a spherical particle in rotating flows are studied by numerical
simulation to investigate the effects of the curvature of the streamlines and the vorticity of the undis-
turbed background flow. The particle centre is fixed in space, and the rotating motion of the particle is
studied in two types of rotating flows: free vortex (irrotational flow) and forced vortex (a rigidly-rotating
flow). In both vortices, the angular velocity of the particle is found to exhibit self-similarity with respect
to the curvature of the background flow in a range of particle Reynolds number between 5 and 100. Based
on this finding, the angular velocity is represented, irrespective of the free and forced vortices, by a single
correlation equation of the curvature, the vorticity and the particle Reynolds number. As for the lift force,
the effect of the particle rotation induced by the background flow is non-negligible for both vortices. The
lift force on a single freely-/non-rotatable particle in a free/forced vortex is found to be represented by
linear combination of the following three effects; the streamline curvature and vorticity of the back-
ground flow, and the angular velocity of the particle rotation.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Solid-dispersed flows appear in many engineering applications
as well as natural environment. In solid-dispersed turbulence con-
taining particles of a density higher than the surrounding fluid, the
turbulent flow causes non-uniform particle concentration known
as the preferential concentration (Squires and Eaton, 1990; Eaton
and Fessler, 1994) and the particle motion enhances the flow mod-
ulation. Understanding particle behaviour in vortical flows is
important for modelling and controlling particle-laden flows.

To track a large number of particles in a practical simulation of
particle-laden flow, point-particle models (e.g., Sommerfeld, 2003;
Ren et al., 2011) have been often applied together with hydrody-
namic force models acting on the particles. Some early drag force
models for a sphere in a uniform flow were constructed based on
experimental results (e.g. Schiller and Naumann, 1933; Morsi and
Alexander, 1972). Also the lift force on a rotating sphere in a uni-
form flow (known as Magnus lift force) has been studied exten-
sively. For very low particle Reynolds number (Re), Rubinow and
Keller (1961) obtained the equation of Magnus lift force based on
the Oseen approximation, and later, it was extended to the higher
particle Reynolds numbers by experimental studies (Tanaka et al.,
1990; Oesterlé and Dinh, 1998). As for the study on the lift force,
Saffman (1965, 1968) derived the lift force on a stationary sphere

in a linear shear flow for Re� 1. Later, Mei (1992) developed the
equations of Saffman lift force applicable to a wider range of the
particle Reynolds number based on the results by Dandy and
Dwyer (1990) and McLaughlin (1991). The lift force due to a linear
shear flow decreases with the particle Reynolds number, and Kur-
ose and Komori (1999) showed that the shear-induced lift force
changes the sign at around Re = 60. On the other hand, Sridhar
and Katz (1995) showed in their experiment with microscopic
bubbles that the lift force on a single bubble in a rotating flow is
larger than those on a rigid particle in a linear shear flow cases.
The result is consistent with the lift force in a rigidly rotating vor-
tex (hereafter referred to as ‘‘forced vortex’’ as schematically
shown in right hand side of Fig. 1) measured by van Nierop et al.
(2007). The numerical result of Bluemink et al. (2008) indicates
that the lift force on a sphere in a forced vortex increases with
Re, which is the opposite trend from the cases of the linear shear
flow. These previous works suggest that the lift force is sensitive
to the difference of undisturbed background flows. Though the
magnitude of the lift force is ordinarily smaller than that of the
drag force on a sphere, the trajectories of the particles are strongly
influenced by the lift force.

Particle rotation has a significant effect on the lift force, and the
torque on the particle determines the particle rotation. The torque
on a sphere and its angular velocity are often related as follows:
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where qf is the density of the fluid, D the diameter of the particle, x
the vorticity of the background flow, X the particle angular velocity
and CT is the torque coefficient, which is often determined by the
analytical result of a rotating sphere in a uniform flow for Re� 1
(Rubinow and Keller, 1961) or the numerical result of a rotating
sphere in a stationary fluid for a range of finite particle Reynolds
numbers (Dennis et al., 1980). Eq. (1) assumes that the particle rota-
tion is accelerated/decelerated until the particle angular velocity
coincides with the half vorticity of the ambient flow. However,
the freely-rotatable spherical particle adopts the angular velocity
determined by the torque-free condition, and it is often different
from x/2. Bagchi and Balachandar (2002a) suggested the following
correlations for a sphere in a linear shear flow:

Xst ¼
1
2 ð1� 0:0364Re0:95Þx for 0:5 6 Re 6 5
1
2 ð1� 0:0755Re0:455Þx for 5 6 Re 6 200;

(
ð2Þ

where Xst is the steady angular velocity of the particle. Eq. (2) indi-
cates jXstj/jxj < 0.5 for the Reynolds numbers they studied, and sat-
isfies the torque-free condition assumed in Eq. (1) only in the limit
of creeping flow. On the other hand, Bluemink et al. (2008) simu-
lated the particle behaviour in a forced vortex and they proposed
the following correlation equation for the steady angular velocity
of the particle:

Xst ¼
1
2
ð1þ 0:0045ReÞx for 5 6 Re 6 200: ð3Þ

Eq. (3) shows jXstj/jxj > 0.5, which is the opposite trend to Eq. (2).
As Eqs. (2) and (3) show, the trend of Xst depends on the back-
ground flow pattern.

Despite the fact that the spherical particle adopts different
trends of Xst–x relation depending on the background flow, it is
reported that lift forces on the sphere could be discussed with a
linear combination of two independent contributions of shear
and particle-rotation; Bagchi and Balachandar (2002a) found that,
for a freely-rotating sphere in a linear shear flow, the shear-in-
duced lift and Magnus-like lift (due to particle rotation in a uni-
form flow) could be decoupled in the Reynolds number range
0.5 6 Re 6 200. Bluemink et al. (2010) further showed that, in a
rigidly-rotating flow, the lift force induced by the flow and particle
rotation can be superposed in the range 5 6 Re 6 200. In addition,
Bluemink et al. (2008) indicated that the cross-stream shear com-
ponent of the background flow is a significant factor for the particle

rotation, and that a similar decoupling is applicable for Xst in a
range where the effects of shear components are relatively small.
They also showed that the particle rotates in an irrotational flow
such as a pure straining flow which is inconsistent with Eq. (1).
Moreover, Bagchi and Balachandar (2002b) showed the asymme-
tricity of the stress distribution on the surface of a stationary par-
ticle in a straining flow, which suggests a torque generation on the
surface in an irrotational background flow.

The above correlations for the decoupled components are repre-
sented with the vorticity of the undisturbed background flow. How-
ever, the behaviour of the particle cannot be determined only by the
effect of the vorticity. Considering that the vorticity vanishes in an
irrotational flow, the effect of the (rotational/irrotational) rotating
flow (on the angular velocity and lift coefficient of the particle) could
be further separated into the contributions of the vorticity and the
curved streamline. A free vortex is a typical example of a curved flow
with no vorticity, and one of the simplest models of the turbulent
vortex may be described as a rigidly-rotating core surrounded by a
free vortex. The rotating flows of constant vorticities are character-
ised by the vorticity and streamline curvature, which is related to the
cross-stream shear component of the rotating flows.

In this paper, we numerically study the hydrodynamic forces on
a spherical particle in two different types of undisturbed back-
ground flow: a free vortex and a forced vortex. We propose an ori-
ginal convective boundary condition to deal with the background
rotating flow within a finite domain size. The centre of the particle
is fixed in space, and particles of freely-rotatable condition and
non-rotatable condition are employed. Focusing on the rotating
motion of the particle, the lift force and the torque acting on the
particle are investigated, and the decoupling of the flow-induced
lift and Magnus-like lift is discussed for both free and forced vortex
cases by varying the geometric parameter of the vortices (i.e., cur-
vature of the streamlines) and particle Reynolds number.

2. Governing equations and numerical method

2.1. Governing equations

The continuity and Navier–Stokes (N–S) equations are de-
scribed on a non-inertial frame of reference fixed at the particle
centre as follows:

r � u ¼ 0; ð4Þ

Fig. 1. Schematics of the free and forced vortices as the background flow.
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