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Many existing definitions of the entropy of mixing for granular materials involve a “total entropy” that is
calculated from the “local entropies” of all cells in the domain of the mixture. The total entropy has been used
as ameasure of mixedness bymany authors, but they have virtually never presented the values of the individual
local entropies. For comparison purposes, we introduced a parallel definition of the entropy of mixing by
considering an alternative “total entropy” that is based on the “per-species entropies” of all types of particles
in the mixture. Using a simple mixing model in continuous variables, we showed that the contributions of the
individual “local entropies” and the “per-species entropies” to their respective totals showdifferent trends during
a specific, idealisedmixing process: while the total entropy constantly increases following either definition, only
the local entropies show non-monotonic changes; on the other hand, only the per-species entropies reach the
maximum possible value of the Shannon entropy at the steady state of mixing.We rationalised these differences
by considering the changes in the probabilities associated with each individual entropic term, in the context
of the properties of the Shannon entropy, and confirmed these ideas by studying the two-dimensional
phase-space trajectories of the individual entropic terms for the mixing process considered.

© 2014 Published by Elsevier B.V.

1. Introduction: definition and some properties of the Shannon
entropy

Since the concept of information entropy was put forward by
Shannon in 1948 [1], many authors [2–10] have defined measures
of mixedness based on the Shannon entropy for use in their study of
granular mixing. We will first state the mathematical definition of the
Shannon entropy. Consider a discrete probability distribution with
n outcomes, with respective probabilities of occurrence given by
p1, …, pn; knowing exactly one of the n events is bound to occur,
we define the Shannon entropy [1] of the distribution as

H ¼ −
Xn

k¼1

pk lnpk ð1Þ

Some important properties of the Shannon entropy [1] follow from
this definition. Firstly, any change towards equalisation of p1, p2, …, pn
increases H, that is, if p1 b p2 and we increase p1 and decrease p2 by an
equal amount so that p1 and p2 are more nearly equal, then the entropy
increases. Secondly, when all the probabilities aremade exactly equal,H
reaches itsmaximumpossible value of ln n. Thus,Hwill keep increasing
and ultimately reach its global maximum if and only if its associated
probabilities constantly tend towards equalisation.

2. The “local entropy” concept

Consider a mixture of ns different types of equal size particles,
or “species”. The entire domain that the particles occupy is divided
into nc fixed regions called “cells”. Then most entropy-based mixing
indices in the literature [2–10] are defined in a fashion similar to what
follows: for a certain state of the mixture, one first calculates the “local
entropy” for every individual cell using

Si ¼ −
Xns

j¼1

pj=i lnpj=i ð2Þ

where i is the counter for cells, j the counter for species, and pj/i the con-
ditional probability that a random particle picked from themixture is of
species j, given that the particle is in cell i; in orderwords, pj/i is the frac-
tion of particles in cell i that are of species j. Next, onefinds the “total en-
tropy” of the entire mixture, given by

Stot ¼
Xnc
i¼1

piSi ð3Þ

where pi is the probability that a randomparticle picked from the entire
mixture is from cell i, that is, the size of cell i divided by the size of the
domain. We can think of Stot as a weighted arithmetic mean of all Si,
where the contribution of each Si is proportional to the size of cell i.

Although authors who proposed definitions similar to the above
have closely examined Stot during mixing, very little about the
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individual Si terms has been reported. We will now consider a specif-
ic example to examine the individual contributions of Si to Stot.
Consider a mixture of different types of particles that are only

distinguishable by their colour: blue, red, or green, for which j is
equal to 1, 2, or 3 respectively. Let pj be the probability that a
random particle picked from the entire mixture is of species j, and
arbitrarily set pj = 1 = 2/9, pj = 2 = 1/9, and pj = 3 = 2/3 for the
purpose of illustrating the calculations. We divide the mixture into
three equal size cells so that pi = 1/3 for i = 1, 2, 3. Now consider
a mixing process where the initial conditions are given by Table 1
in terms of pj/i. Note it is possible to set pj, pi, and the initial values
of pj/i to any other self-consistent values.

We now require a simple method to cause mixing of the particles.
There are many methods of simulating granular mixing; some are
very sophisticated, such as the Discrete Element Method approach

Table 1
Initial conditions of the mixing process considered in terms of pj/i.

pj/i Cells

i = 1 (cell 1) i = 2 (cell 2) i = 3 (cell 3)

Species j = 1 (blue particles) 1/18 0 11/18
j = 2 (red particles) 0 1/18 5/18
j = 3 (green particles) 17/18 17/18 1/9

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

p
j/

i

i=1, j=1 i=1, j=2 i=1, j=3

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

p
j/

i

i=2, j=1 i=2, j=2 i=2, j=3

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

p
j/

i

i=3, j=1 i=3, j=2 i=3, j=3

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

p
j/

i

i=1, j=2 i=2, j=2 i=3, j=2

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

p
j/

i

i=1, j=3 i=2, j=3 i=3, j=3

a b

c

e

d

f

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

p
j/

i

i=1, j=1 i=2, j=1 i=3, j=1

Fig. 1. (a). Solutions for the simulatedmixing process in terms of pj/i; cell 1, i=1. (b). Solutions for the simulatedmixing process in terms of pj/i; cell 2, i=2. (c). Solutions for the simulated
mixing process in terms of pj/i; cell 3, i= 3. (d). Solutions for the simulated mixing process in terms of pj/i; blue particles, j=1. (e). Solutions for the simulated mixing process in
terms of pj/i; red particles, j = 2. (f). Solutions for the simulated mixing process in terms of pj/i; green particles, j = 3.
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