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Packed beds have been used or proposed for many different applications, including thermal storage in buildings
and in solar thermal power plants. In order to size the blowers and predict the operating and capital cost, the
packed bed pressure drop must be known. The Ergun equation, commonly used for predicting packed bed pres-
sure drop, over-predicts the pressure drop through randomly packed or structured beds of smooth spheres at
Ergun Reynolds numbers in excess of ≈700, and previous work has found it to under-predict the pressure
drop through beds of rock by a factor as high as 5. Present measurements of the pressure drop for air flow
through beds of rough spheres, smooth cylinders, cubes and crushed rock are significantly higher than those
for smooth spheres, and all differ from the Ergun equation. Particle shape, arrangement (including packing
method) and surface roughness are shown to influence the pressure drop. Recent correlations for non-
spherical particles are shown to differ significantly from present measurements. Different pressure drop mea-
surements obtained for irregularly shaped rock packed into the test section in two different directions relative
to the flow direction show that random packing is not necessarily isotropic. In order to predict the pressure
drop over a packed bed of irregular particles such as crushed rockwith any degree of accuracy, an empirical equa-
tion must be obtained from a sample of the particles for a given packing arrangement.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Packed beds of particles have been used in a number of different ap-
plications such as building heating and cooling (for example Hughes et
al. [1]), absorption or ion-exchange resin beds [2]. Packed beds of rock
have been proposed for use as thermal storage in solar thermal power
generation, an application for which there is “great potential”, although
further work is needed on understanding pressure drop [3]. The pres-
sure drop through a packed bed must be known in order to estimate
the capital and operating costs and to size the blowers or pumps re-
quired to force fluid through it. The present work looks at pressure
drop through packed beds of regular, irregular, rough and smooth par-
ticles in order to show which are the most important parameters that
influence the pressure drop, and to better understand the complexity
of pressure drop through packed beds, particularly rock beds.

1.1. Correlations for packed bed pressure drop prediction in the literature

The Ergun friction factor fErg of a packed bed is [4]

fErg ¼ Δp
Lρv2s

D
ε3

1−εð Þ ¼
150
ReErg

þ 1:75: ð1Þ

The Ergun Reynolds number ReErg is defined as

ReErg ¼ ρvsD
μ 1−εð Þ ¼

Rep
1−ε

: ð2Þ

The superficial speed vs is defined as

vs ¼
_m

ρAcs
: ð3Þ

D is the particle size, defined by Ergun in terms of particle volume
and surface area:

D ¼ 6ΣVp

ΣAp
: ð4Þ

Ergun proposed estimating this ratio indirectly by means of pres-
sure drop measurements over a packed bed of the material at low
flow rates in the viscous regime. For a sphere, Eq. (4) reduces to the
sphere diameter. Ergun does not explicitly state the range of validity
of Eq. (1). The measurements on which his correlation is based,
or with which he compared it, are in the range 1 b ReErg b 2400. He
does not specifically state what particles he used; tables and graph
legends in Ergun [4] or Ergun and Orning [5] suggest spheres, pulver-
ized coke/coal, sand, cylinders and tablets were used. The correlation
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is not based solely on pressure drop measurements through spheres
or smooth particles.

Montillet [6] states that equations of the form Δp/L = avs + bvs
2 –

such as the Ergun equation – should not be used for Rep N 500–600, be-
cause, in the turbulent regime, the pressure drop in a finite packed bed
is not proportional to the square of the flow speed. He attributes this to
the combined effect of transition to a new flow regime and thefinite na-
ture of the packed bed. Niven [7] argues that the vs2 pressure loss term is
strongly dependent on local losses— expansion, contraction and change
in flow direction, which occur even in laminar flow. He states that in
fully turbulent flow, the local losses should be dominant, rather than
turbulent losses, which results in “a second transition, from laminar to
turbulent flow,” which occurs at Reynolds numbers higher than the
transition within the Ergun equation.

The Ergun equation, for ReErg N 700, over-predicts the pressure drop
for randomly packed beds of smooth spheres. The over-prediction can
be seen in Ergun [4] from some of the graphical data he shows. On the
other hand, the measurements of Zavattoni et al. [8] for rock beds
were 10–30% higher than the Ergun equation, and Shitzer and Levy
[9] measured rock bed pressure drops a factor of 1.5–5 times higher
than the Ergun equation. Tobiś [10] has shown, by inserting obstacles
into the flow passages between spheres in a simple cubic packing ar-
rangement, that the constant 1.75 in the Ergun equation can vary by a
factor up to almost five, depending on the alignment and shape of the
obstacle. Mayerhofer et al. [11] have shown, for irregularly shaped
wood chips, that the packing alignment of the wood chips relative to
the air flow direction influences the pressure drop.

Hicks [12] warns that the constants in the Ergun equation may
be dependent on the Reynolds number. He notes that, although
the Ergun equation is “advanced by several textbooks without re-
striction to flow range,” it may not be applicable for spheres when
ReErg N 500.

A range of correlations for spherical and non-spherical particles is
given below. The selection includes recent correlations, two of which
include parameters to estimate the influence of wall effects.

Carman [13] gives the following correlation for spheres in a test
section with negligible wall effects, for 0.1 b ReErg b 60 000:

fC ¼ Δp
Lρv2s

D
ε3

1−εð Þ ¼
180
ReErg

þ 2:87
Re0:1Erg

: ð5Þ

Hicks [12] proposes a relation for the range 300 b ReErg b 60 000
for spheres:

fH ¼ Δp
Lρv2s

D
ε3

1−εð Þ ¼
6:8
Re0:2Erg

: ð6Þ

Brauer [14] gives an equation for packed beds of spheres, plotted
against measured data for the range 0.01 b ReErg b 40 000, which
may be written as

fB ¼ Δp
Lρv2s

D
ε 3

1−εð Þ ¼ 160
ReErg

þ 3:1
Re0:1Erg

: ð7Þ

This equation is almost identical to the equation used by the KTA
3102.3 standard for pebble bed nuclear reactors [15]; the only differ-
ence is that the constant 3.1 is changed to 3.

Jones and Krier [16] give a correlation for spherical glass beads in
the range 1000 b Rep b 100 000, 8 b Dc/D b 52, which can be written
as

f JK ¼ Δp
Lρv2s

D
ε3

1−εð Þ ¼
150
ReErg

þ 3:89
Re0:13Erg

: ð8Þ

Another correlation for pressure drop in a bed of spheres of uni-
form diameter is found in Idelchik [17], which presents a correlation
by Bernshtein for void fractions between 0.3 and 0.8:

f I ¼
Δp
Lρv2s

D
ε3

1−εð Þ ¼
ε3

1−εð Þ
0:765
ε4:2

30
ReI

þ 3
Re0:7I

þ 0:3

 !
ð9Þ

where ReI = (0.45/ε0.5) ReErg. The range of applicability of the equa-
tion is not specifically stated; Idelchik uses it in graphs over the
range 0.001 b ReI b 1 000.

For beds of spheres, Montillet et al. [18] propose

f M ¼ Δp
Lρv2s

D
ε3

1−εð Þ ¼ a
Dc

D

� �0:20 1000
Rep

þ 60
Re0:5p

þ 12

 !
ð10Þ

where a is 0.061 for dense packings (ε b 0.4) and 0.050 for loose
packings (ε N 0.4). The equation is valid for 3.8 b Dc/D b 50 and
10 b Rep b 2500. For Dc/D N 50, (Dc/D)0.2 is set to 2.2. This equation
was obtained from measurements with water or aqueous solutions
of glycerol in a cylindrical column. Montillet et al. do not state how
the value Dc should be calculated for test sections of a non-circular
cross-section.

Singh et al. [19] present a correlation for pressure drop through
beds of differently shaped particles, with the particle shape taken
into account by means of a sphericity factor ψ:

ψ ¼ As

Ap
¼ 36πV2

p

A3
p

" #1=3
: ð11Þ

Here As is the surface area of a sphere that has the same volume as
the particle. The correlation is based on data for pressure drop
through spherical and other non-spherical objects from measure-
ments in the range 1000 b Rep b 2700 (approx. 1500 b ReErg b 5000),
and the particle diameter Dve is defined as the diameter of a sphere
that has the same volume as the particle volume Vp:

f S ¼
Δp
Lρv2s

Dve
ε3

1−εð Þ ¼
ε3

1−εð Þ 4:466Re−0:2
p ψ0:696ε−2:945e11:85 logψð Þ2 ð12Þ

where

Dve ¼
6
π
Vp

� �1=3
: ð13Þ

An equation for spherical or non-spherical particles with wall cor-
rection terms is found in Eisfeld and Schnitzlein [20]:

f ES ¼
Δp
Lρv2s

D
ε3

1−εð Þ ¼
K1A

2
w

ReErg
þ Aw

Bw
: ð14Þ

Aw and Bw are the wall correction terms, defined as

Aw ¼ 1þ 2
3 Dc=Dð Þ 1−εð Þ ð15Þ

Bw ¼ k1 D=Dcð Þ2 þ k2
h i2

: ð16Þ

The values of K1, k1 and k2 presented by Eisfeld and Schnitzlein are
shown in Table 1. They are based on experimental data largely with
spheres and cylinders for 0.33 b ε b 0.88, 0.01 b Rep b 17 700 and
2 b Dc/D b 250. Eisfeld and Schnitzlein do not specify how Dc should
be calculated for non-circular bed cross-sections.

For non-spherical particles, Nemec and Levec [21] propose alter-
ing the constants in the Ergun equation by means of the particle
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