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H I G H L I G H T S

• Stochastic day-ahead microgrid management algorithm considering uncertainties in PV, load and temperature.

• Quantification of the effectiveness of demand side management by implementing thermal models and thermal comfort constraints.

• Comparison of comfort constraint violations and annual operational costs of a stochastically managed microgrid.

• Comparison of deterministic and stochastic day-ahead management strategies.
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A B S T R A C T

Microgrid operations are challenging due to variability in loads and renewable energy generation. Advanced
tools capable of taking uncertainty into account are essential to maximize microgrid benefits when operating
microgrid owned DERs. This paper proposes a novel optimization model for day-ahead economic dispatch of
flexible resources within a microgrid environment, considering uncertainty of PV and loads.This model is
conceived to support the microgrid supervisory control layer, providing a security-constrained day-ahead
strategy to operate three types of microgrid flexible resources: PV, electric storage and controllable loads. The
work presented in this paper introduces a novelty in microgrid operations by presenting a stochastic version of
the day ahead scheduling of microgrid DERs to deal with uncertainties associated with PV, load and temperature
while considering microgrid network limits and end-user comfort as optimization constraints. An annual analysis
quantifies the benefits of to the microgrid-owner of a stochastic formulation over a deterministic one both in
terms of ensuring end-user comfort and decreasing operation costs.

1. Introduction

At the distribution grid level, uncertainties in renewable generation
and load consumption represent a challenge to network operation,
namely for day ahead planning of Distributed Energy Resources (DERs),
such as grid connected storage, controllable loads or photovoltaic (PV)
control strategies, implemented in real time by a distribution manage-
ment system (DMS). These challenges are magnified in microgrids,
where uncertainties are higher due to minimal aggregation and
smoothing effects. Since microgrids are more easily perturbed by DERs,
an accurate control is needed to manage multiple electric storage sys-
tems, load devices and generation units, while ensuring a stable and

reliable operation of the microgrid network and minimizing costs [1,2].
Due to high uncertainties in load and renewable generation, mi-

crogrid control requires advanced forecasting tools and robust sche-
duling of controllable devices to guarantee power quality and security
of supply. In particular, the control of individual loads, e.g. heating,
ventilation and air-conditioning (HVAC) systems [3], brings new
sources of uncertainty to the day ahead planning of DERs, such as
ambient temperature, building occupancy and consumption habits. This
uncertainty has a modest impact on grid operations when aggregated at
the distribution level but it becomes relevant at the microgrid scale
where a finer control is needed.

Optimization algorithms have been presented in the literature to
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solve the problem of day ahead scheduling of microgrid dispatchable
resources. Numerous examples of deterministic [4,5], stochastic [6,7]
and hybrid [8,9] approaches to plan and operate renewable intensive
microgrids are presented in the literature. Optimization methods in-
clude quadratic programming (QP) [10], as well as heuristic and meta-
heuristic techniques [4,11]. In the optimal scheduling of DERs in multi-
node microgrids, heuristics have the advantage of enabling exact net-
work constraints [4], while QP requires a convex relaxation of power
flow equations [9]. Due to the random aspect of search techniques in
heuristic methods, calculation time can be high and the global optimal
is not guaranteed. However, QP methods perform significantly better in
terms of computational time. Thus, when combined with techniques
that guarantee accuracy of the power flow calculations, e.g. linear cuts
[12], they become a better solution.

Stochastic approaches have been used in optimal operation of mi-
crogrids to capture uncertainties of renewable sources [13]. Primarily,
these strategies include either scenario trees [14,7] or statistical para-
meters of the stochastic variables [15,11,16] that are integrated into the
optimization problem. Monte Carlo simulation along with the dis-
tribution functions for generators and load are used to generate sce-
narios in [15]. Scenarios are constructed by analyzing the mean, stan-
dard deviation and probability density functions of load and generation
in [11]. Upper and lower bounds on generation and load are considered
in [16]. A scenario tree is developed to represent stochastic variables
such as temperature, electricity prices and consumer occupancy
through the calculation of quantiles and consideration of the prob-
ability density function (PDF) of historical data [7].

The day ahead operation of microgrids includes optimal scheduling
of multiple DER technologies. Besides the generation and storage

control solutions, demand response (DR) has been a valuable resource
to compensate the variability of the renewable sources, especially
through the control of thermal loads, such as HVAC and Electric Water
Heaters (EWH). In fact, as shown in [8], load control can significantly
reduce microgrid operation costs as well as CO2 emissions. Two primary
modeling strategies are presented in the literature for DR consideration:
an aggregated model or individual modeling of devices. Aggregated
models make acceptable assumptions about individual devices [14] and
improve aggregated controllability of the microgrid, but the comfort of
individual end users is not modeled in detail. Thus, individual load
models become more appropriate for small scale applications (e.g.
buildings) where a detailed comfort representation is required. In [9],
individual load models are used in optimization of building operations
with DR. A deterministic approach that considers end-user comfort
constraints and PV for a 3 building micro-grid is detailed in [5]. An
algorithm proposing an economic penalty for violations in thermal
comfort constraints is presented in [7] however, this paper does not
consider the electric network and instead performs only an energy
balance.

A majority of the mentioned citations take into account the losses in
the electrical lines in a two-step process and do not integrate a full AC
optimal power flow (AC-OPF) into the optimization problem
[13,11,15].

This paper presents a novel method for day ahead scheduling of
loads and DERs that has a low calculation burden while considering
network constraints. To the authors knowledge, it is the first time that a
full AC-OPF algorithm is used while considering thermal comfort con-
straints of end users. Moreover, the presented model adds on recent
innovations in the field of stochastic AC-OPF [17], by expanding the
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A. Indices

t period
ij branch
j node
pv PV system association
ul uncontrollable load
cl controllable load
st storage system association
hvac heating, ventilation, and air-conditioning systems
ewh electric water heater systems
Δθlow maximum degrees of under-heating tolerated (°C)
Δθhigh maximum degrees of overheating tolerated (°C)
ext external air temperature
int internal air temperature of each house
w property of water
d controllable device
s scenario-dependent variables
+ positive domain
cw water specific heat (J/g °C)
Rd thermal resistance of device (°C/kW)
– negative domain
0 substation node point of common coupling

B. Constants

ce cost of wholesale electricity (€/MWh)

cc cost of wholesale electricity plus distribution and trans-
mission costs(€/MWh)

ccf cost of comfort constraint violation (€/°C h)
rij resistance of a specific branch (Ω)
xij reactance of a specific branch (Ω)
η efficiency of a device
Cd thermal capacity of a device (kWh/°C)
α heat loss coefficient of building (kW/°C)
P maximum active power value allowable (MW)
S maximum apparent power value allowable (MVA)
V minimum voltage constraint of grid (V)
V maximum voltage constraint of grid (V)
soc maximum state of charge of battery (MWh)
soc minimum state of charge of battery (MWh)
θ minimum temperature (°C)
θ maximum temperature (°C)

C. Variables

P active power (MW)
ℓ squared current magnitude (A)
Q reactive power (MW)
ϑ squared voltage magnitude (V2)
soc state of charge of a battery system (MWh)
θ temperature (°C)
vd,t electric hot water consumption (l)
θin inlet water temperature (°C)
θout desired outlet water temperature (°C)

θΔ low degrees of under-heating (°C)
θΔ high degrees of overheating (°C)
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