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H I G H L I G H T S

• A reinforcement learning-based real-time energy management is proposed in this paper.

• The algorithm can learn current driving power information and then update the strategy.

• The electricity consumption has been taken into consideration in the optimization.

• The battery health has also been taken into consideration in the optimization.

• The proposed strategy was verified in different temperatures, SoHs, initials of SoCs.
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A B S T R A C T

Power allocation is a crucial issue for hybrid energy storage system (HESS) in a plug-in hybrid electric vehicle
(PHEV). To obtain the best power distribution between the battery and the ultracapacitor, the reinforcement
learning (RL)-based real-time power-management strategy is raised. Firstly, a long driving cycle, which includes
various speed variations, is chosen, and the power transition probability matrices based on stationary Markov
chain are calculated. Then, the RL algorithm is employed to obtain a control strategy aiming at minimizing the
energy loss of HESS. To reduce the energy loss further, the power transition probability matrices should be
updated according to the new application driving cycle and Kullback-Leibler (KL) divergence rate is used to
judge when the updating of power management strategy is triggered. The conditions of different forgetting
factors and KL divergence rates are discussed to seek the optimal value. A comparison between the RL-based
online power management and the rule-based power management shows that the RL-based online power
management strategy can lessen the energy loss effectively and the relative decrease of the total energy loss can
reach 16.8%. Finally, the strategy is verified in different conditions, such as temperatures, states of health,
initials of SoC and driving cycles. The results indicate that not only can the RL-based real-time power-man-
agement strategy limit the maximum discharge current and reduce the charging frequency of the battery pack,
but also can decrease the energy loss and optimize the system efficiency.

1. Introduction

The fact that current transportation highly depends on nonrenew-
able fuels raises more and more concern over sustainability develop-
ment of the global environment [1]. The air pollution caused by tra-
ditional vehicles and the depletion of oil resources has greatly
accelerated the development of electric vehicles [2]. Plug-in hybrid
electric vehicles (PHEV), driven in multiple modes and reducing the
fuel consumption, have attracted much attention. For the energy sto-
rage system (ESS) in the PHEV, it requires not only enough energy to

drive the long distances but also enough power to accelerate, brake,
climb and so on. Some kinds of the battery can satisfy both the high
power density and high energy density, however the battery pack may
overheat and the lifetime of the battery pack is short [3]. Consequently,
some other power sources need to be involved. Ultracapacitors, owing
to long life cycles and instant high power properties, are crucial sup-
plement for the ESS. The power densities of most ultracapacitors are
twice or three times as much as the power densities of batteries [4]. The
working temperature range of ultracapacitors is from −40 °C to 70 °C
and much wider than that of batteries. However, low energy density
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limits its widespread application. In addition, the ultracapacitors can
fully absorb regenerative energy when the vehicle is breaking. To meet
the high energy and power requirements of the ESS simultaneously, the
hybrid energy storage system (HESS) integrating the batteries and ul-
tracapacitors systematically is investigated in recent years [5–9]. In this
system, batteries are mostly used to provide the entire electricity energy
and the ultracapacitors buffer the power when the power is relatively
high or negative [5–6]. It can be seen that ultracapacitors serve as as-
sistive energy source and help to improve the efficiency and dynamic
response of the energy storage system.

Recently, there have been many power management strategies
aimed at optimizing the performance of the HESS and they can be di-
vided into two categories: the rule-based ones and optimization-based
methods. On one hand, the performance of rule-based strategies is
usually decided by current state of the HESS [6–13]. In Ref. [6], a
power management strategy based on a fuzzy logic algorithm is pre-
sented and the results show that the energy efficiency is better than that
of original rule-based strategies. However, this strategy is focused on
the specified driving cycle and it can’t adapt to different driving cycles
automatically. In Ref. [11,14], because dynamic programming algo-
rithm cannot be applied in real time, a new rule-based power man-
agement strategy was attained by using dynamic programming (DP)
algorithm and extracting relevant rules from the optimization results.
Ali et al. [8] presented a rule-based strategy and this strategy showed a
better performance compared with the optimization-based strategy

when the ultracapacitor voltage range is low. It is proved that the op-
timized rule-based strategy improves the system efficiency under some
typical driving cycles. In Ref. [11], the inaccurate terrain information
was taken into account for the strategy and the total cost of the HESS
was effectively reduced. On the other hand, compared with the rule-
based approaches, the optimization-based strategies are superior to
those since the optimization-based strategies make full use of the prior
and the prediction driving cycles to distribute the power between dif-
ferent power sources [14–22]. In Ref. [14], a real-time optimization
using a genetic algorithm was proposed and by employing this method
the RMS current was reduced by 40% comparing with the battery-
powered EV. However, the aging model of the battery was not con-
sidered in that strategy. Odeim [23] presented a new formulation of the
real-time strategy optimization problem. The real-time controllers were
developed by specific simulation and experiment validation for fuel cell
hybrid vehicles. In Ref. [23,24], predictive algorithms were used to
optimize the system, however the performance of these approaches
highly depends on the forecast precision of future driving cycles.

From the above analysis, it can be concluded that power manage-
ment performance should mainly consider three aspects. Firstly, the
optimization goal should consider minimizing the electricity con-
sumption, more reasonable power distribution between different power
sources and prolonging battery calendar life. Secondly, the power
management should be applied in real time condition. Lastly, the power
management strategy should be applied in different conditions such as

Nomenclature

M total mass of the vehicle
η0 efficiency of the transmission system
f rolling resistance coefficient
Aair windward area
Car air resistance coefficient
Ri internal resistance of the battery
CD polarization capacitance of the battery
RD polarization resistance of the battery
UD polarization voltage of the battery
iL total current of the battery
Ut terminal voltage of the battery
Uoc open circuit voltage of the battery
RC internal resistance of the ultracapacitor
iC load current of the ultracapacitor
Uco voltage of the ideal capacitor
Uct terminal voltage of the ultracapacitor
iR output current of DC/DC converter
PR output power of DC/DC converter
Preq required power of the vehicle
β inclination angle of the road
va speed of the target vehicle
η efficiency of the transmission system
δ conversion ratio of vehicle rolling mass

tΔ sampling interval
τbat time constant of the battery
ηb coulomb efficiency of the battery
Qb capacity of the battery pack
Cu capacity of the ultracapacitor pack
s k( ) state vector
a k( ) action variable
J optimization target
ηdcdc efficiency of the DC/DC converter
Pbat output power of the battery pack
z logical value
SoCH upper bound of SoC
SoCL lower bound of SoC

SoVH upper bound of SoV
SoVL lower bound of SoV
iLmin lower bound of the battery current
iLmax upper bound of the battery current
V s( ) value of state s
γ discounting factor
α recession factor
P transition probability matrix

∗P steady-state probability distribution of P
μ tiny constant
I unit matrix with the same dimension as the matrix P
Mi j, transition times from Preq

i to Preq
j

Mi total number of transition times from Preq
i

rt reward function
f t( )i j, transition events from Preq

i to Preq
j

f t( )i transition events started from Preq
i

F L( )i j, frequency of transition events f t( )i j,
F L( )i total frequency of transition events f t( )i
ϕ decaying factor

Abbreviations

HESS hybrid energy storage system
PHEV plug-in hybrid electric vehicle
RL reinforcement learning
KL Kullback-Leibler
ESS energy storage system
DP dynamic programming
GA genetic algorithm
HPPC hybrid pulse power characterization
SoH state of health (for the battery)
OCV open circuit voltage
NEDC New European Driving Cycle
SoC state of charge (for the battery)
SoV state of voltage (for the ultracapacitor)
CBDC Chinese Bus Driving Cycle
TPM transition probability matrixes
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