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H I G H L I G H T S

• Building energy model biases in the WECC depend on the location/number of representative cities.

• Using 1 station per IECC climate zone results in a mean absolute summer temperature bias of 4.0 °C.

• Using 1 station per IECC zone can lead to a 20–40% overestimate of peak loads during summer/winter.

• Using all available stations reduces the mean absolute load bias by a factor of 2.5.

• Using 4 stations per IECC zone reduces both temperature/load biases and computational burden.
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A B S T R A C T

Numerical building models are typically forced with weather data from a limited number of “representative
cities” or weather stations representing different climate regions. The use of representative weather stations
reduces computational costs, but often fails to capture spatial heterogeneity in weather that may be important
for simulations aimed at understanding how building stocks respond to a changing climate. We quantify the
potential reduction in temperature and load biases from using an increasing number of weather stations over the
western U.S. Our novel approach is based on deriving temperature and load time series using incrementally more
weather stations, ranging from 8 to roughly 150, to evaluate the ability to capture weather patterns across
different seasons. Using 8 stations across the western U.S., one from each IECC climate zone, results in an
average absolute summertime temperature bias of∼4.0 °C with respect to a high-resolution gridded dataset. The
mean absolute bias drops to ∼1.5 °C using all available weather stations. Temperature biases of this magnitude
could translate to absolute summertime mean simulated load biases as high as 13.5%. Increasing the size of the
domain over which biases are calculated reduces their magnitude as positive and negative biases may cancel out.
Using 8 representative weather stations can lead to a 20–40% bias of peak building loads during both summer
and winter, a significant error for capacity expansion planners who may use these types of simulations. Using
weather stations close to population centers reduces both mean and peak load biases. This approach could be
used by others designing aggregate building simulations to understand the sensitivity to their choice of weather
stations used to drive the models.

1. Introduction

A large direct societal cost of climate change could come from the
need to build an energy system capable of meeting spikes in energy
demand under heat wave conditions that are changing in frequency in
response to warmer temperatures [1–7]. It is important to energy
system planners and other stakeholders that we understand the detailed
regional, seasonal, and diurnal characteristics of building energy de-
mand under current and future climate conditions. There are efforts
underway across multiple research disciplines to understand and

quantify this potential impact. Much of the literature on this topic is
based on empirical studies which often utilize static representations of
building stock and therefore do not capture dynamic responses to ex-
treme events or evolving building technologies [8–15]. Climate and
weather impacts on individual buildings have also been explored using
numerical building models such as eQUEST [http://www.doe2.com/
equest/], TRACE 700 [http://www.trane.com/commercial/north-
america/us/en/products-systems/design-and-analysis-tools/analysis-
tools/trace-700.html], and the Department of Energy’s (DOE) En-
ergyPlus [16]. A typical approach with these models is to use weather
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data at a single location as input to the model and then analyze the
building energy demand response to changing weather conditions at
that location [5,17–19].

One advancement facilitating new insights in this space is that
composite models of building energy demand using tens of thousands of
individual building simulations, based on different combinations of
building technologies and characteristics or climate scenarios, are now
possible due to increased access to high-performance computing. In
these composite models, individual building simulations under current
or future climate scenarios are aggregated on city [20,21], state [7,11],
or national scales [5,22]. The composite model approach delivers the
detailed, physically-based aspects derived from modeling individual
buildings as well as information on the aggregate effect on larger spatial
or longer temporal scales. Two key uses of these aggregate building
energy models are to quantitatively evaluate the impact of proposed
energy efficiency measures for energy efficient building designs or to
assess the impact of climate or economic changes on aggregate building
energy demand.

The DOE’s Pacific Northwest National Laboratory (PNNL) has de-
veloped the aggregate Building ENergy Demand (BEND) model to ex-
plore the interaction between weather conditions and building energy
demand (alternatively referred to as building loads in this paper). The
BEND model was first described and utilized in Dirks et al. [7], which
explored climate change impacts on peak and annual building energy
demand in the Eastern Interconnection (EIC). At its root, the BEND
model is a mechanism to aggregate EnergyPlus simulations for a re-
presentative sample of building types in a given geographical area.

BEND uses the Commercial Buildings Energy Consumption Survey
[CBECS; https://www.eia.gov/consumption/commercial/about.php]
and Residential Energy Consumption Survey [RECS; https://www.eia.
gov/consumption/residential/] datasets to generate a population of
buildings that span the range of residential and commercial building
sizes and vintages in a climate similar area of a census region. Energy
usage in each building in the sample population is then simulated using
forcing from Energy Plus Weather files that contain an hourly time
series of observed or predicted meteorological variables (e.g., tem-
perature, humidity, solar radiation). These forcing files are the primary
mechanism by which the model responds to changes in weather and
they represent the physical linkage between climate and building en-
ergy demand. The selection of which weather datasets or locations are
used to force the model is a key component of the simulation design.

In an ideal scenario, simulations using BEND or other building en-
ergy models would be run using weather information that exactly
corresponds to the physical location of each simulated building.
However, computational and data constraints make this impractical
and unwarranted: The CBECS and RECS databases only provide a sta-
tistical representation of the nation’s building stock, rather than a
complete geospatially explicit inventory, and there are only ∼1000
surface weather stations in the U.S. with sufficient data density and
quality to drive the underlying EnergyPlus models [23]. The key
questions to address when developing an aggregated building energy
demand model are thus (1) how many representative buildings are
needed to adequately represent the diversity of building types and
corresponding energy demand profiles, and (2) how many weather

Fig. 1. (a) The 8 IECC climate zones that are present in the Western Electricity Coordinating Council (WECC); (b) the 19 PROMOD zones used in the calibration of our BEND simulation;
(c) the 5 climate regions in the CBECS/RECS building databases; and (d) the population within each county in 2014. In all panels the white dots indicate the original 8 Class A
representative weather stations, one for each climate zone, that are used to force BEND. Panel (d) includes a mapping from each county to its associated Class A representative weather
station. The two blank counties in Colorado and New Mexico are not part of the WECC.
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