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h i g h l i g h t s

� This paper proposes an algorithm to optimally charge an electric vehicle considering the usage of the vehicle.
� The charging policy depends on the use of the vehicle, the risk aversion of the end-user, and the electricity price.
� The model is versatile and can easily be adapted to any specific vehicle, thus providing a customized charging policy.
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a b s t r a c t

The combination of electric vehicles and renewable energy is taking shape as a potential driver for a
future free of fossil fuels. However, the efficient management of the electric vehicle fleet is not exempt
from challenges. It calls for the involvement of all actors directly or indirectly related to the energy
and transportation sectors, ranging from governments, automakers and transmission system operators,
to the ultimate beneficiary of the change: the end-user. An electric vehicle is primarily to be used to sat-
isfy driving needs, and accordingly charging policies must be designed primarily for this purpose. The
charging models presented in the technical literature, however, overlook the stochastic nature of driving
patterns. Here we introduce an efficient stochastic dynamic programming model to optimally charge an
electric vehicle while accounting for the uncertainty inherent to its use. With this aim in mind, driving
patterns are described by an inhomogeneous Markov model that is fitted using data collected from the
utilization of an electric vehicle. We show that the randomness intrinsic to driving needs has a substan-
tial impact on the charging strategy to be implemented.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Electric vehicles (EVs) are emerging as a sustainable and
environmentally friendly alternative to conventional vehicles,
provided that the energy used for their charging is obtained from
renewable energy sources. The energy generated from renewable
sources such as sunlight, wind and waves is, however, dependent
on weather conditions. As a consequence, the electricity produc-
tion from these sources is inherently uncertain in time and quan-
tity. Furthermore, electricity has to be produced and consumed
at the same time, as the large-scale storage of the energy generated
is, still today, very limited. As a result, the energy obtained from
renewables may be wasted in times when the demand for electric-
ity is not high enough to absorb it, with a consequent detrimental
effect on the profitability of renewables. Since the battery in an EV
is basically a storage device for energy, the large-scale integration

of EVs in the transportation sector may contribute to substantially
increasing the socioeconomic value of an energy system with a
large renewable component, while reducing the dependence of
the transportation sector on liquid fossil fuel.

For this reason, EVs have received increased interest from the
scientific community in recent years (detailed literature reviews
of the state of the art can be found in [1,2]). Special attention has
been given to the analysis of the effect of EVs integration on the
electricity demand profile [3,4], emissions [5] and social welfare
[6–8], and to the design of charging schemes that avoid increasing
the peak consumption [9,10], help mitigate voltage fluctuations
and overload of network components in distribution grids [11],
and/or get the maximum economic benefit from the storage
capability of EVs within a market environment, either from the
perspective of a single vehicle [12,13] or the viewpoint of an aggre-
gator of EVs [14,15]. In all these publications, though, and more
generally in the technical literature on the topic, the charging
problem of an EV is addressed either by considering deterministic
driving patterns, when the focus is placed on the management of a
single vehicle, or by aggregating the driving needs of different EV
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users, when the emphasis is on modeling a whole fleet of EVs. This
aggregation, however, obscures the dynamics of each specific
vehicle. Likewise, the deterministic driving patterns of a single
EV are often based on expected values or stylized behaviors, which
fail to capture important features of the charging problem such as
the daily variation in the use of the vehicle or potential user
conflicts in terms of not having the vehicle charged and ready for
use. A stochastic model for driving patterns provides more insight
into these aspects and becomes fundamental for applying a charg-
ing scheme in the real world. Despite this, the stochastic modeling
of driving patterns has received little attention from the scientific
community, as pointed out in [1]. We mention here the research
work by [16], in which they aim to capture the uncertainty intrin-
sic to the vehicle use by means of a Monte Carlo simulation
approach. They assume, however, an uncontrolled charging
scheme.

The work developed in this paper departs from the following
two premises:

1. The primary purpose of the battery of an EV is to provide power
to drive the vehicle and not to store energy from the electricity
grid. Consequently, it is essential that enough energy is kept in
the battery to cover any desired trip. This calls for a decision
tool that takes into account the driving needs of the EV user
to determine when charging can be postponed and when the
battery should be charged right away.

2. The complexity of human behavior points to a stochastic model
for describing the use of the vehicle. In turn, this stochastic
model should be integrated into the aforementioned decision
tool and exploited by it.

That being so, this paper introduces an algorithm to optimally
decide when to charge an EV that exhibits a stochastic driving pat-
tern. The algorithm builds on the inhomogeneous Markov model
proposed in [17] for describing the stochastic use of a single vehi-
cle. The model parameters are then estimated on the basis of data
from the use of the specific vehicle. The approach captures the
diurnal variation of the driving pattern and relies only on the
assumption that the EV-user’s driving habits can be explained
and modeled as a stochastic process, more particularly, as an inho-
mogeneous Markov chain. This makes our modeling approach
noticeably general and versatile. Our algorithm thus embodies a
Markov decision process which is solved recursively using a stochas-
tic dynamic programming approach. The resulting decision-
support tool allows for addressing issues related to charging,
vehicle-to-grid (V2G) schemes [12,18], availability and costs of
using the vehicle. The algorithm runs swiftly on a personal com-
puter, which makes it feasible to implement on an actual EV.

The remainder of this paper is organized as follows: In Section 2
the stochastic model for driving patterns developed in [17] is
briefly described, tailored to be used in the present work, and ex-
tended to address the problem of driving data limitations through
hidden Markov models. Section 3 introduces the algorithm for the
optimal charging of an EV as a Markov decision process that is
solved using stochastic dynamic programming. Section 4 provides
results from a realistic case study and explores the potential
benefit of implementing V2G schemes. Section 5 concludes and
provides directions for future research within this topic.

2. A stochastic model for driving patterns

In this section we summarize and extend the stochastic model
for driving patterns developed in [17]. We refer the interested
reader to this work for a detailed description of the modeling
approach.

2.1. Standard Markov model

A state-space model is considered to describe the use of the EV.
In its simplest form, it contains two states, according to which the
vehicle is either driving or not driving. A more extensive version of
the model would include a larger number of states which could
capture information about where the vehicle is parked, how fast
it is driving or what type of trip it is on. The basics of the general
multi-state stochastic model are described in this section, includ-
ing how to fit a specific model on an observed data set.

Let Xt , where t 2 f0;1;2; . . .g, be a sequence of random variables
that takes on values in the countable set S, called the state space.
Denote this sequence as X. We assume a finite number, N, of states
in the state space. A Markov chain is a random process where fu-
ture states, conditioned on the present state, do not depend on
the past states [19]. In discrete time X is a Markov chain if

P Xtþ1 ¼ kjX0 ¼ x0; . . . ;Xt ¼ xtð Þ ¼ P Xtþ1 ¼ kjXt ¼ xtð Þ ð1Þ

for all t P 0 and all fk; x0; . . . ; xtg 2 S.
A Markov chain is uniquely characterized by the transition

probabilities, pjkðtÞ, i.e.

pjkðtÞ ¼ P Xtþ1 ¼ kjXt ¼ jð Þ: ð2Þ

If the transition probabilities do not depend on t, the process is
called a homogeneous Markov chain. If the transition probabilities
depend on t, the process is known as an inhomogeneous Markov
chain.

When it comes to the use of a vehicle, it is appropriate to as-
sume that the probability of a transition from state j to state k is
similar on specific days of the week. Thus, for instance, Thursdays
in different weeks will have the same transition probabilities. For
convenience we further assume that all weekdays (Monday
through Friday) have the same transition probabilities. In other
words, we consider that the transition probabilities of the inhomo-
geneous Markov chain vary within the day, but not from day to
day. These assumptions can be easily relaxed or interchanged with
other assumptions and as such, are not essential to the model.
With a sampling time in minutes, and taking into account that
there are 1440 min in a day, this leads to the assumption:

pjkðtÞ ¼ pjkðt þ 1440Þ: ð3Þ

This assumption implies that the transition probabilities, de-
fined by (2), are constrained to be a function of the time, s, in the
diurnal cycle. Let the matrix containing the transition probabilities
be denoted by PðsÞ. This matrix characterizes the driving pattern of
the specific vehicle under consideration using N states. It has the
form:

PðsÞ ¼

p11ðsÞ p12ðsÞ . . . p1NðsÞ
p21ðsÞ p22ðsÞ . . . p2NðsÞ

..

. ..
. . .

. ..
.

pN1ðsÞ pN2ðsÞ . . . pNNðsÞ

0BBBB@
1CCCCA; ð4Þ

where pjjðsÞ ¼ 1�
PN

i¼1;i–jpji.
Now let njkðsÞ define the number of observed transitions from

state j to state k at time s. From the conditional likelihood function,
the maximum likelihood estimate of pjkðsÞ for the inhomogeneous
Markov chain can be found as:

p̂jkðsÞ ¼
njkðsÞPN
k¼1njkðsÞ

: ð5Þ

A discrete time Markov model can be formulated based on the
estimates of Pð1Þ;Pð2Þ; . . . ;Pð1440Þ. One apparent disadvantage
of such a discrete time model is its huge number of parameters,
namely N � ðN � 1Þ � 1440, where N � ðN � 1Þ parameters have
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