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A B S T R A C T

Dynamic instability analysis of doubly-tapered cantilever composite beams rotating with periodic rotational
velocity is conducted in the present work for out-of-plane bending (flap), in-plane bending (lag) and axial vi-
brations. Rayleigh-Ritz method and classical lamination theory are used along with an energy formulation.
Bolotin’s method is applied to obtain the instability regions. To verify the dynamic instability analysis results,
time responses are investigated at different locations of the instability region by using the Runge-Kutta method.
A comprehensive parametric study is conducted in order to understand the effects of taper configurations and
various system parameters including mean rotational velocity, hub radius, double-tapering angles and stacking
sequences, on the dynamic instability characteristics of the composite beam. The composite material considered
in the present work in numerical results is NCT-301 graphite-epoxy prepreg.

1. Introduction

Composite material has outstanding engineering properties, such as
high strength/stiffness to weight ratios and favorable fatigue char-
acteristics and due to this reason composite material is used in the
design of rotating structure such as aircraft turbo fans, helicopter rotor
blades and wind turbine blades. In some specific applications such as
helicopter blades, robot arms, turbine blades and satellite antenna
components need to be stiff at one location and flexible at another lo-
cation. A typical example is a helicopter rotor blade, where a pro-
gressive variation in the thickness of the blade is required to provide
high stiffness at the hub and flexibility in the middle of blade length, to
accommodate for flapping. This type of structure is formed by termi-
nating or dropping off plies at the pre-determined location to reduce the
stiffness of the structure which is called tapered composite structure
[1]. These elastic tailoring properties and more significant weight
saving than commonly used laminated components allow an increasing
use of tapered composite structure in commercial and military aero-
space and power generation engineering applications.

In a rotating composite beam, dynamic instability can be caused by
in-plane periodic load or by periodic rotational velocity. When the
frequency of dynamic periodic load and the frequency of free vibration
of the component coincide, parametric resonance will occur in the
structure, which results dynamic instability of the structure. Mechanical
structures that operate within the instability region will experience
parametric resonance. This incident reduces the durability of structure

and leads to unpredictable and catastrophic failure. Especially in an
aircraft engine or in wind turbine, rotating blade experiences periodic
aerodynamic loads which change the constant angular velocity to pul-
sating angular velocity. The excitation frequency of the pulsating load
may coincide with the natural frequency of free vibration of the blade
and the blade becomes dynamically unstable from nominal position.
Even when the parametric vibration might not have an immediate ef-
fect, it is a future threat for fatigue failure, if they continue to act.
Dynamic instability analysis introduces a method to predict and prevent
the parametric vibration which is necessary to design a structure for
safety and reliability especially when it is out of immediate main-
tenance.

Dynamic instability analysis of a beam subjected to periodic loads is
an important and advanced research topic. A number of research works
can be traced to parametric resonance or dynamic instability of iso-
tropic non-rotating beam. Bolotin [2] first comprehensively reviewed
the research works on dynamic instability problems of bars, plates and
shells. Hyun and Yoo [3] studied the dynamic stability of an axially
oscillating cantilever beam considering the stiffness variation. The dy-
namic stability of a radially rotating beam subjected to base excitation
was investigated by Tan et al. [4].

With a few exceptions, most of these studies have addressed the
axially oscillating problem. On the other hand, Yoo et al. [5] analyzed
the dynamics of a rotating cantilever beam. They presented a linear
modeling method for the dynamic analysis of a flexible beam under-
going overall motion. Based on this modeling method, Chung and Yoo
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[6] derived the partial differential equations of motion for a rotating
cantilever beam and discretized using the Galerkin method to in-
vestigate the natural frequencies and time response. This study in-
vestigates the dynamic stability of the flap wise motion of a cantilever
beam by using the method of multiple scales, when the beam oscillates
in the rotational direction.

In relation to composite materials, Saravia et al. [7] first in-
vestigated the dynamic stability behavior of thin-walled rotating com-
posite beams using finite element method. Lin and Chen [8] studied the
dynamic stability of a rotating composite beam with a constrained
damping layer subjected to axial periodic loads. Chen et al. [9] in-
vestigated the dynamic stability of rotating composite shafts under axial
periodic loads. Chattopadhyay and Radu [10] studied the dynamic in-
stability of composite laminates using a higher order theory.

In addition to these works, many researchers considered the dy-
namic instability of beams that are subjected to follower forces. Beck
[11] examined the dynamic instability of a cantilever beam subjected to
an axial follower force that was applied at the free end. Instability of a
rotating cantilever beam subjected to dissipative, aerodynamic, and
transverse follower forces has been investigated by Anderson [12].
Most recently, Torki et al. [13] evaluated the stability characteristics of
cantilevered FGM cylindrical shell under axial follower forces. They
have used Love's hypothesis to derive the differential equations of
motion, and used an extended Galerkin's method to solve the equations
of motion. Goyal et al. [14] and Kim et al. [15] studied the dynamic
stability of laminated composite beams subjected to non-conservative
tangential follower loads.

To the present authors’ knowledge, a comprehensive study on the

dynamic instability of doubly-tapered (thickness-and width-tapered)
rotating composite beam has not so far been carried out. In the present
paper, the dynamic instability of doubly-tapered composite beam ro-
tating with periodic rotational velocity is investigated considering out-
of-plane bending, in-plane bending and axial undamped vibrations.
Rayleigh-Ritz approximate solution method based on classical lamina-
tion theory has been employed for energy formulations. Bolotin’s
method is applied to obtain the instability regions. A comprehensive
parametric study is conducted in order to understand the effects of
various parameters including mean rotational velocity, hub radius,
double-tapering and different stacking sequences. In addition, to verify
the instability analysis results, time responses are investigated at dif-
ferent locations of the instability region by using the Runge-Kutta
method.

2. Energy formulation

Consider a laminated composite beam of length L, which is attached
to a hub of radius R, as shown in the Fig. 1 in Cartesian coordinates. The
hub rotates about its axis at a constant angular speed Ω rad/s. The
origin for the coordinates is taken at the edge of the hub. The x -axis
coincides with the neutral axis of the beam, the z-axis is parallel to the
axis of rotation and the y-axis lies in the plane of rotation.

View on y-z plane illustrates beam changing the thickness from h0
to hLand changing its width from b0 to bL over the length L. The lami-
nated composite beam consists of N layers, numbered from the lower to
the upper face. To study the out-of-plane bending vibration, x -y plane is
chosen as the mid-surface and reference plane. Dynamic instability
analysis of the above composite beam requires associated equation of
motion. The Lagrange’s equation can be used to obtain the equation of
motion of this physical system. To use Lagrange’s equation, total strain
energy, including work done by the centrifugal force and kinetic energy
of the system, needs to be determined. Considering that the beam’s
length to thickness ratio is high, Classical Laminate Theory (CLT) can be
used to determine the strain energy which assumes that transverse
shear strains are zero and neglects z-direction stress, that is
= = =σ γ γ0, and 0zz
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where σxx
k and σyy

k denote the stresses in corresponding ply along the x
and y directions, respectively, εxx

k and εyy
k denote the strains in corre-

sponding ply along x and y directions, respectively. τxy
k is shear stress

and γxy
k is shear strain in the corresponding ply acting on the x -y plane.

For the doubly-tapered laminated composite beam shown in the Fig. 1,
strain energy equation can be written as:

Fig. 1. (a) Doubly-tapered rotating composite beam (b) Different taper configurations.

Fig. 2. Deformation of the beam in the lamination plane (x-y plane).
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