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A B S T R A C T

In this paper, an effective formulation for vibration analysis of multiple-stepped functionally graded beams with
general boundary conditions is presented. The material properties are assumed to change continuously in the
thickness direction according to a power law distribution of the volume fraction of the constituents. The the-
oretical model is formulated on the basis of a variational method in conjunction with the first-order shear
deformation theory. The essence of the present formulation is to express the displacement and rotation com-
ponents by nodeless Fourier sine functions and nodal Lagrangian polynomials. Since the boundary nodal dis-
placement information is introduced into the admissible functions, the interface continuity and boundary con-
ditions are easily handled. Based on this, each structure component may be further partitioned into appropriate
segments in order to accommodate the computing requirements of higher-order vibration modes. A variety of
numerical examples are presented to demonstrate the accuracy, reliability and computational efficiency of this
method. Furthermore, the effects of the material properties, geometric parameters as well as boundary condi-
tions on the frequencies of the beam structures are discussed.

1. Introduction

Functionally graded materials (FGMs) are classified as novel com-
posite materials which possess continuous and smooth spatial varia-
tions of material properties along desired directions. Such materials can
eliminate the high stress concentration in conventional laminated
composite structures. Consequently, FGMs have more extensive po-
tential applications in various engineering fields. As one of the most
fundamental structure elements, beam structures made of FGMs need to
be well-designed due to there may exists excessive vibration in their
applications.

A close scrutiny of the references reveals that a lot of research ef-
forts have been devoted to free vibration analysis of uniform FGM
beams. Aydogdu and Taskin [1] analyzed the free vibration of func-
tionally graded beams with simply supported edges using Navier
method based on different beam theories. Li [2] proposed a unified
approach for analyzing static and dynamic behaviors of FGM beams
with the rotary inertia and shear deformation included, in which a
single fourth-order partial differential equation were derived by in-
troducing a new auxiliary function. Free and forced vibration analyses
of a FGM Euler-Bernoulli beam were carried out by Şimşek and

Kocatürk [3] using Lagrange’s equations combined with Lagrange
multipliers. Subsequently, Şimşek [4] employed different higher-order
beam theories to study fundamental frequency characteristics of FGM
beams. Sina et al. [5] analyzed free vibration of FGM beams based on a
new first-order shear deformation beam theory. Giunta et al. [6] in-
vestigated free vibration of a simply supported FGM beam using hier-
archical beam theories, in which the three-dimensional kinematic field
is derived in a compact form as a generic N-order polynomial approx-
imation. Thai and Vo [7] developed various higher-order shear de-
formation beam theories for bending and free vibration of FGM beams
in which the transverse displacement was partitioned into bending and
shear components. Pradhan and Chakraverty [8] employed Rayleigh-
Ritz method to analyze free vibration of Euler and Timoshenko FGM
beams with various boundary conditions. Li et al. [9] studied transverse
vibration of axially FGM beams with various end conditions. Free vi-
bration of Bernoulli-Euler FGM beams was analyzed by Su et al. [10]
using dynamic stiffness method.

Due to their capability of accommodating more complicated en-
gineering requirements stepped beams are extensively used. However,
discontinuous variation in cross-section results in mathematical and
computational complexities. There exist a number of reports available
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on the vibration analysis of stepped beams. However, most of them are
confined to isotropic stepped beams. Naguleswaran [11] proposed an
analytical method to study vibration of an Euler-Bernoulli beam with
up to three step changes in cross-section, in which the classical and
elastic end supports are considered. Koplow et al. [12] obtained the
dynamic response of Euler-Bernoulli beams with one step change sub-
jected to free boundary conditions. The free vibration of a cantilevered
multiple stepped beam was analyzed by Jaworski and Dowell [13] in
which comparison of several numerical methods with experiment was
presented. Lu et al. [14] investigated dynamic behavior of a Euler-
Bernoulli beam with multiple steps via a composite element method
(CEM) which is a combination of the conventional finite element
method and highly precise classical theory. Miao [15] extended ado-
mian decomposition method (ADM) to obtain the natural frequencies of
multiple stepped beams. Wang and Wang [16] carried out free vibra-
tion analysis of Euler-Bernoulli multiple stepped beams via the differ-
ential quadrature element method (DQEM). Duan and Wang [17] ob-
tained accurate high-order mode frequencies of Euler-Bernoulli
multiple stepped beams using the discrete singular convolution (DSC).
Lee [18] utilized a Chebyshev-tau method to analyze free vibration of
stepped beams on the basis of the Euler-Bernoulli beam theory and the
Timoshenko beam theory. Compared to the isotropic stepped beam, the
investigation of FGM stepped beams is rare. Up to now, to the authors’
best knowledge, there are only two available papers concerning this
problem [19,20] which are limited to FGM beams with one step change
and neglect the effects of shear deformation and rotary inertia. Con-
sequently, the primary object of this paper is to establish a reliable and
efficient model for vibration analysis of stepped functionally graded
beams which takes effects of shear deformation and rotary inertia into
account and is capable of handling multiple step changes.

In this paper, an effective formulation is proposed to analyze dy-
namic characteristic of multiple-stepped Timoshenko beams with gen-
eral boundary conditions. The material properties are assumed to
change continuously in the thickness direction according to a power
law distribution of the volume fraction of the constituents. The theo-
retical model is formulated on the basis of a variational method in
conjunction with the first-order shear deformation theory. The essence
of the present formulation is to express the displacement and rotation
components by nodeless Fourier sine functions and nodal Lagrangian
polynomials. Since boundary nodal displacement information is in-
troduced into the admissible functions, the interface continuity and
boundary conditions are easily handled. Based on this, each structure
component may be further partitioned into appropriate segments in
order to accommodate the computing requirements of higher-order
vibration modes. A variety of numerical examples are presented to
demonstrate the accuracy, reliability and computational efficiency of
this method. Furthermore, the effects of the material properties, geo-
metric parameters as well as boundary conditions on the frequencies of
the beam structures are discussed.

2. Theoretical formulations

2.1. Description of model

The geometry of a stepped beam consisting of N uniform sections
with an aligned neutral axis and the co-ordinate systems related to each
section are depicted in Fig. 1. The reference surface of the beam is taken
to be its middle surface where the co-ordinate system is fixed. The
length, thickness and width of the nth section are denoted by Ln, hn and
bn. In order to deal with the discontinuous variation in cross-section, the
stepped beam is divided into N sections along the location of steps. Each
section can be further decomposed into J segments for the purpose of
accommodating requirements of high-order vibration modes. The
dotted lines in Fig. 1 represent the interface between two adjacent beam
segments in a beam section. un j, and wn j, are the displacements of the jth
segment of the nth section in x and z directions, respectively.

For the typical FGMs fabricated from a mixture of two material
constituents M1 and M2, material properties are assumed to vary con-
tinuously and smoothly in thickness direction. According to Voigt
model, the effective Young’s modulus Ef, mass density ρf and Poisson’s
ratio μf of the nth beam section are defined as
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where Vn,1 is the volume fraction of M1 in the nth beam section and
given as according to a power law distribution
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in which pn is the gradient index which determines the material var-
iation profile through the thickness. Obviously, the top and bottom
surfaces of each beam sections are M1 rich and M2 rich, respectively. In
order to clearly demonstrate the material distribution at stepped points,
the schematic sketches of two adjacent beam sections are depicted in
Fig. 2. Since the thicknesses of the adjacent beam sections are different,
the materials at pn are mixture of M1 and M2, whereas the materials at
pn+1 are M1.

2.2. Variational formulation for beam segments

Mathematically, structural vibration problems can be stated in a
variational form, which usually leads to a solution that is easier to
obtain than by solving the partial differential equations directly.
Consequently, in this work, an efficient variational method is im-
plemented to deal with the beam segments. The variational energy of
the jth segment in the nth section is defined as

= −U TΠn j n j n j, , , (3)

where Un,j and Tn,j are the linear elastic strain and kinetic energies,
respectively.

Based on the first-order shear deformation theory, the displace-
ments of an arbitrary point in interior of the beam segment are ex-
pressed in terms of displacement and rotation components of the re-
ference surface, as given below:
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where un,j and wn,j are the displacement components of corresponding
point on middle surface in x and z directions, respectively. φn,j is the
rotation of transverse normal. For the sake of simplicity, the subscripts
n and j will be omitted in the following formulation. t is time variable.

The linear strain–displacement relations in the interior of the do-
main can be given as:
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where ε0 is the membrane strain of mid-surface. χ is the curvature
change. γ is the transverse shear strain. The constitutive relations are
given in the matrix form:
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where σxx and τxz are the normal and shear stresses, respectively. The
elastic coefficients Q11 and Q66 are functions of variable z and defined
as
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The relationships between force moment resultants and strains are
defined by:
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