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a b s t r a c t

This work was focused on the examination of the effect of the pre-stress, namely tension and pressure, on
the wave propagation and acoustic behaviour of composite laminates. The dispersion characteristics of
two dimensional layered and sandwich structures were predicted using Wave Finite Element Method
(WFEM). The structures were examined in non-stressed and pre-stressed scenarios. After extracting
the mass and stiffness matrix of a small periodic segment of the structure using commercially available
Finite Elements software, a polynomial eigenvalue problem was formed, the solutions of which consisted
of the propagation constants of the waves of the structure. This way the wavenumbers and eigenvectors
of the out of plane structural displacements were extracted. These wave propagation magnitudes were
then used to calculate important Statistical Energy Analysis (SEA) quantities, such as modal density
and radiation efficiency. The effect of pre-stress on these quantities, along with its effect on loss factor
of the structure were examined.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Current research in most industries, such as aerospace and
automotive, focuses on materials that offer low density along with
superior dynamic and static performance. This goal has led to
increasing use of sandwich structures and composite materials in
general, whose high stiffness-to-weight ratio along with the tailor-
ing of their properties that they offer make them quite appealing.
This high stiffness-to-weight ratio they offer, though, comes with
a significant cost in their vibroacoustical behaviour, being respon-
sible for high noise and displacement resonant vibrations.
Prompted by that, elevated quality and quantity of research is
about modelling the behaviour of these materials, along with con-
ventional ones, using time and cost efficient computational meth-
ods. These methods are used to reach the goal of enhanced
stiffness, weight and vibration behaviour.

Classical publications [1,2] offer analytic formulas to predict the
wave propagation characteristics of numerous different structures.
Classical Laminate Plate Theory (CLPT) is one of them [3], being
developed as an extension of the Kirchhoff–Love’s theory for iso-
tropic panels and can be applied on thin orthotropic plates. Addi-
tionally, First-order Shear Deformation Theory (FSDT) [4] is based
on the transverse shear deformation of the panel and can be used

for the prediction of the dispersion characteristics at higher fre-
quencies. Many researchers have used this kind of classical theo-
ries producing satisfying outcomes, such as Leppington et al.
[5,6] who modelled the radiation efficiency and the vibroacoustic
response under a reverberant field. Others [7,8] have mathemati-
cally improved the existing equations and examined the vibra-
tional behaviour of laminated plates. Kurtze and Waters [9] were
the first to examine the wave dispersion of thick sandwich struc-
tures by developing an asymptotic model. In their assumptions,
though, the core was called incompressible, which kept them from
modelling the deformation of the panel in the thickness sense.
Dym and Lang [10], using the kinematic assumptions of [11] devel-
oped a structural model for an infinite sandwich panel deriving the
five equations of motion corresponding to the symmetric and
antisymmetric motion of the panel. Sokolinsky et al. [12] devel-
oped a consistent theory (Higher-Order Shear Deformation Theory,
HSDT) taking into account the core’s shear deformation and Wang
et al. [13,14] used it to construct a structural model of an infinitely
long sandwich panel in which the vibroacoustic response within an
Statistical Energy Analysis (SEA) context was calculated. Wave
propagation has been major object of intense research with
numerous numerical methods being developed the last decades.
Finnveden in [15] examined hollow beam structures and presented
a method of calculating the wave dispersion in them. In [16] the
authors used Spectral Finite Element (SFE) to predict the wave
propagation characteristics, overcoming the thresholds of CLPT.

http://dx.doi.org/10.1016/j.compstruct.2016.06.027
0263-8223/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: emxta3@nottingham.ac.uk (T. Ampatzidis).

Composite Structures 152 (2016) 900–912

Contents lists available at ScienceDirect

Composite Structures

journal homepage: www.elsevier .com/locate /compstruct

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruct.2016.06.027&domain=pdf
http://dx.doi.org/10.1016/j.compstruct.2016.06.027
mailto:emxta3@nottingham.ac.uk
http://dx.doi.org/10.1016/j.compstruct.2016.06.027
http://www.sciencedirect.com/science/journal/02638223
http://www.elsevier.com/locate/compstruct


In [17] the phase constant surfaces of periodic composite and stiff-
ened structures was examined taking advantage of the periodicity
using Periodic Structure Theory (PST) and Finite Elements (FE). In
this work, an expression for the computing of the radiation effi-
ciency was presented and the STL was expressed through the radi-
ation and mechanical impedances of the structures. In [18,19] the
authors used a multi-layer analytical model based on Mindlin the-
ory to calculate the dispersion characteristics of layered structures.
In this work, though, the symmetric mode of motion was not nat-
urally expressed. The same authors [20] came back presenting an
approach for taking into account the symmetric wave motion for
thick panels. Wave Finite Element Method (WFEM) was firstly
introduced in [21]. Its main aspect is that it takes advantage of
the periodicity of the structure and using existing classical litera-
ture’s periodic theory [2] manages to examine a structure’s wave
propagation by modelling only a small periodic part of it using
FE for its analysis. This way the calculation of the wavenumbers
and eigenvectors is achieved with considerably lower cost of time
than the previous ones. WFEM has been used in one dimension
[22,23] and in two dimensions analyses [24] producing quite satis-
fying results. Using FE for the structure’s modelling has given
researchers the ability to broaden the potentials of the method,
calculating loss factor [25] with the help of existing theories [26].
In addition to that, Manconi et al. [27] calculated the effect of the
pre-stress on the loss factor and wavenumbers of structures using
two dimensional WFEM. Chronopoulos et al. in [28] produced the
wave dispersion characteristics using the WFEM by forming a
dynamic stiffness matrix for a honeycomb orthotropic sandwich
panel, the results of which were validated experimentally. Also,
the same authors in [29,30] using WFEM and SEA computed the
broadband vibroacoustic response of composite shells and thick
layered panels. Another use of WFEM is the examination of the
potential band gaps in periodic structures. Domadiya et al. [23]
used WFEM to model two different periodic beams to examine
the band gaps and had the results certified with actual experi-
ments. Droz et al. [31] proposed a mathematically improved ver-
sion of the WFEM and calculated the wave propagation and band
gaps in a periodically stiffened plate.

In this paper the effect of pre-stress on wave propagation and
acoustical behaviour of laminates was examined. Two-
dimensional WFEM was used to calculate the Sound Transmission
Loss (STL) of thick structures by accounting for their symmetric
and antisymmetric wave motion. Both non-stressed and pre-
stressed scenarios were examined. Equations from [30] were used
to compute the reverberant field STL of the structures directly
derived by their SEA properties. Finally, the loss factor of each
structure was calculated.

The paper is organized as follows: in Section 2 the WFEM is
described, along with the calculation of the loss factor and the
pre-stressed stiffness matrix Ks. In Section 3 the calculation of
the main SEA quantities is presented. In Section 4 the analysis

scenarios are presented, along with the numerical results. Finally,
in Section 5 concluding remarks are written and in Section 6 some
thoughts on future work are presented.

2. The two dimensional WFEM

2.1. Stress stiffening

In this work two different scenarios of pre-stressed structures
were examined, as described in the next section. In these cases,
pre-stress stiffness matrix Ks was calculated. Considering that a
static analysis has been solved, the updated stiffness matrix K
was calculated [32]:

K ¼ K0 þ Ks ð1Þ
where K0 the original element stiffness matrix and:

Ks ¼
ZZZ

GTsGdxdydz ð2Þ

where G is a matrix of shape function derivatives and s is a matrix
of the current Cauchy (true) stresses r in the global Cartesian
system.

The updated matrix K was then used in WFEM to get the
wavenumbers and eigenvectors of the pre-stressed structure.

2.2. Description of the WFEM

In this paper a laminate of Lx length and Ly width was examined.
An FE model of a small segment of the laminate was created. This
segment’s length was dx, while its width was dy (Fig. 1). The seg-
ment was meshed using commercially available FEA software.
The vector of degrees of freedom (dofs) q of the segment is given
in terms of dofs by [24]

q ¼ qT
1 qT

2 qT
3 qT

4

� �T ð3Þ
where T denotes the transpose and qn is the vector of nodal dofs of
all the elements nodes which lie on the nth corner of the element
[24]. Following the same logic, the vector of nodal force is given by

f ¼ fT1 fT2 fT3 fT4
h iT ð4Þ

Conventional FE methods is then used to get theM and Kmatri-
ces of the segment. Assuming time-harmonic behaviour and
neglecting damping we have

½K�x2M�q ¼ f ð5Þ
Using Floquet theorem for a rectangular segment and taking

edge 1 as reference we get

q2 ¼ kxq1; q3 ¼ kyq1; q4 ¼ kxkyq1 ð6Þ

Fig. 1. Representation of the modelled internally pressurised periodic segment with its edges 1, 2, 3 and 4.
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