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a b s t r a c t

The eigenstrain theory is widely used to study inelastic responses of several classes of materials subjected
to phase transformation, thermal expansion, and other multiphysics excitations. In this paper, we focus
on electrically conducting cellular solids and examine their magnetoelastic responses when used as a
core of a sandwich cylinder subjected to an eigenstrain and an external magnetic field. The cylinder com-
prises layers of either solid or cellular material and undergoes either plane strain or plane stress condi-
tions in both time-harmonic and transient states. We use direct homogenization techniques (standard
mechanics and micromechanical models) along with Bessel, Struve, and Lommel functions to study the
roles that cell topology, relative density, eigenstrain, and bonding interface play on the magnetoelastic
responses of the sandwich cylinder. The results show that relative density, cell topology, and magnetic
field are the factors that most contribute to control the sandwich response. We also show that a careful
tailoring of relative density and cell topology can lead to the simultaneous weight and overall stress
reduction with improved natural frequency.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In a homogenous body free from external forces and surface
constraints, inclusion refers to a finite subdomain subjected to a
prescribed eigenstrain [1]. Thermal expansion, swelling strain,
phase transformation, plastic deformation, and piezoelectric/
piezomagnetic strain are examples of nonelastic strains, namely
eigenstrains [2–4]. The eigenstrain theory enables in a single math-
ematical formulation to study each of these phenomena, including
the response of an electrically conducting material. It can also be
used to study the impact of microstructural imperfections in
homogeneous and heterogeneous media.

Several works in the literature resorted to the eigenstrain theory
to study problems dealing with the three-dimensional nanostrain
in Ni–Ti shape memory alloys [5], residual strain measurements

[6], stress changes caused by local deboning and damage evolution
[7], and strain in living or non-living tissues [8]. Early microme-
chanical investigations on the eigenstrain were pioneered by
Eshelby [9] as well as Mura and Kinoshita [10]. Since then, the stud-
ies that followedmainly focused on the application of eigenstrain in
particulate composites and residual stress measurements [11–22].
For example, Liang et al. [23] obtained the stress field induced by an
eigenstrain within an ellipsoidal inclusion in a thin film of a micro-
electromechanical system. The effect of the thin film’s thickness on
the induced eigenstress was found to decrease with an increase in
the film thickness. The problem of an arbitrary-shaped heterogene-
ity, undergoing an eigenfield in a uniform magnetoelectroelastic
load, was also examined. Shen and Hung [24], for instance,
observed that the selection of appropriate eigenfields could effec-
tively reduce the eigenstress developed in piezoelectric and piezo-
magnetic composites.

Sandwich structures are routinely used in automotive, aero-
space, and sports equipment, among other sectors [25]. In the lit-
erature, there exists a large body of research on this subject
across the length scale spectrum. In general, previous works focus
on the micromechanics and multiphysics responses, such as elasto-
dynamic, thermoelastic, and torsional rigidity [26–28]. The core of
a typical sandwich panel is commonly made of either foams, e.g.
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polyurethane and polyethylene foams, or periodic cellular solids,
e.g. honeycombs, corrugated metals, and other lattices [29,30].
Their cellular architecture is often preferred to their solid counter-
part not only for their low mass, but also for their ability to satisfy
multifunctional requirements, such as those prescribed for heat
exchangers, piezoelectric transducers, and bone tissue scaffolds
[31–33]. For example, thermal expansion, electric conductivity,
and flow permeability are some of the properties controlled by
the geometry of the unit cell, in particular its topology, nodal con-
nectivity, and relative density. While there are many studies on the
multifunctional properties of cellular materials [34–43], few of
them have used an eigenstrain analysis to study their mechanical
and multiphysics properties, and to investigate the residual stress
within the sandwich structure. For example, Schjodt-Thomsen and
Pyrz [44] used a model based on Eshelby’s equivalent eigenstrain
to analyze the influence of alternative statistical cell dispersions
on the local strain and the overall effective properties. The model
was capable of capturing the effect of microstructural morphology
on the stiffness properties. Nguyen et al. [45] examined the
homogenization problem by imposing an eigenstrain that repre-
sents the thermal or piezoelectric strain within the representative
volume element (RVE). The authors highlighted the simplicity of
their model which was then used to obtain the effective properties.
Moreover, Liu and Liang [46], through a micromechanics approach,
obtained the effective elastic moduli of triangular lattices with
microstructural defects. In this case, the use of eigenstrain was
proved to be effective in the assessment of the role of defects
occurring during the manufacturing of a set of cellular solids.

More recently, electrically conducting cellular structures under
a prescribed magnetic field have garnered a great deal of attention
in a range of applications, such as medical microrobots driven by
magnetic actuations [47], hydrophones [48], and metamaterials
with negative permeability and negative refraction properties for
optics [49]. Advances in additive manufacturing have also enabled
the fabrication of cellular solids with electrically conducting
microarchitecture, specifically for real-time measurement of struc-
tural performance [50–52]. Sandwich structures with electrically
conducting solids experience the Lorentz force, according to the
uncoupled magnetoelasticity theory [53], which dictates their
multifunctional responses. To date, however, the behavior of a
sandwich cylinder with an electrically conducting cellular core
subjected to a prescribed magnetic field has been rarely studied
in the literature. To the best knowledge of authors, the analysis
conducted in reference [37] is the only contribution considering
the effect of magnetic field on the behavior of porous sandwich
structures where the cellular layers have square cells. This subject
matter is thus the focus of this work, which contributes to the body
of literature dealing with the multiphysics analysis of cellular
materials in the presence of eigenstrain.

The following clarifies the differences and originality that dis-
tinguish this work from that in reference [37]. This paper focuses
on the role of cell topology in the magnetic properties of a periodic
cellular solid. Besides the square cell, additional four cell topolo-
gies are investigated for the first time in this paper. For each of
them, we present closed-form expressions describing the role of
cell topology in the response of a sandwich cylinder subjected to
a non-uniform eigenstrain which can assume any arbitrary form.
Reference [37], on the other hand, studies the effect of relative den-
sity and property gradients for cellular layers with square cells. In
addition, this work studies the effect of bonding imperfections on
the multiphysics responses of lightweight sandwich cylinders, as
opposed to our previous work which assumes perfect bonding
among layers. Furthermore, here we present expressions for the
effective magnetic permeability that are obtained numerically via
standard mechanics and theoretically with closed form bounds.
We also conduct a finite element analysis to validate the theoreti-

cal predictions. In reference [37], the relative density is assumed to
vary linearly and only the Voigt model is used for the calculation;
the results presented in this paper show how crude those approx-
imations are, with inaccuracy up to 75% for the effective magnetic
permeability.

The paper is organized as follows. Selected planar topologies for
the unit cell are examined in Section 2 and their effective magne-
toelastic properties are obtained via standard mechanics homoge-
nization. In Sections 3 and 4, a dynamic eigenstrain excitation in
the radial direction is expressed as a polynomial with an arbitrary
order, which can be applied to any layer of a sandwich cylinder.
The results are verified with finite element results and those found
in the literature (Sections 5.1 and 5.2). The last part of the paper
studies the influence of bonding imperfection, eigenstrain distribu-
tion, external magnetic field, cell topology, and relative density,
besides mapping these factors in charts that illustrate the time-
harmonic responses of alternative sandwich layouts.

2. Effective magnetoelastic properties of periodic cellular solids

Homogenization theory is commonly used to determine the
effective properties of cellular solids and other periodic materials
[54–58]. Many methods have been proposed, including micropolar
theory, standard mechanics, asymptotic homogenization, and
micromechanical models [36,59], and effectively used to predict
the properties of a cellular domain from of a limited portion of it,
namely the Representative Volume Element. One main advantage
of homogenization methods is the reduced computation cost as
compared to a fully detailed analysis, where each cell element
would be individually modeled. In this section, we present the
effective magnetoelastic properties obtained by standard mechan-
ics (numerical homogenization) and micromechanical closed-form
expressions.

For the cellular core of the cylinder, we examine five alternative
planar topologies of the unit cell (Figs. 1 and 2): square, mixed (tri-
angular) A, and mixed (triangular) B with cubic symmetry, and
Kagome and triangular with isotropic properties. Their material
properties are conveniently expressed as a function of their rela-
tive density qr:

qr ¼
�q
qs

ð1Þ

where �q and qs are, respectively, the effective density of the unit
cell of cellular solids and the density of the constituent solid
material.

Standardmechanics homogenization with periodic boundary con-
ditions applied to each unit cell (Figs. 1 and 2), along with the classi-
cal elasticity theory are here used to obtain the effective
magnetoelastic properties numerically. In particular, the effective
stiffness and magnetic permeability tensors of an electrically conduc-
tive representative volume element (RVE) are here expressed as:

�Cijkl ¼ 1
VRVE

Z
CijmnM

C
mnkldVRVE;

�lij ¼ 1
VRVE

Z
likM

l
kjdVRVE

ð2Þ

where Cijkl and lij ði; j; k; l;m;n ¼ 1;2;3Þ are stiffness and magnetic
permeability tensors, VRVE represents the RVE volume (for a planar
RVE, VRVE is replaced by the area ARVE). Local structural ðMC

ijklÞ and

local magnetic ðMl
ij Þ tensors are defined as:

eij ¼ MC
ijkl
�ekl; u;i ¼ Ml

ij
�u;j ð3Þ

where eij and u represent strain tensor and magnetic potential,
respectively [25]. The overbar in Eqs. (1)–(3) stands for the effective
properties ð�q; �Cijkl; �lijÞ or average fields ð�eij; �uÞ. For planar lattices,
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