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a b s t r a c t

Automated fiber placement is a manufacturing technology that enables to build composite laminates
with curvilinear fibers. To determine their optimum mechanical properties, finite element analysis is
commonly used as a solver within an optimization framework. The analysis of laminates with curvilin-
ear fibers coupled with the fiber path optimization requires a large number of function evaluations,
each time-consuming. To reduce the time for analysis and thus for optimization, a metamodel is often
proposed. This work examines a set of metamodeling techniques for the design optimization of com-
posite laminates with variable stiffness. Three case studies are considered. The first two pertain to
the fiber path design of a plate under uniform compression. The third concerns the optimization of a
composite cylinder under pure bending. Four metamodeling methods, namely Polynomial Regression,
Radial Basis Functions, Kriging and Support Vector Regression, are tested, and their performance is
compared. Accuracy, robustness, and suitability for integration within an optimization framework are
the appraisal criteria. The results show that the most accurate and robust models in exploring the
design space are Kriging and Radial Basis Functions. The suitability of Kriging is the highest for a
low number of design variables, whereas the best choice for a high number of variables is Radial Basis
Functions.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Automated fiber placement (AFP) is a technology capable of
placing fibers along a curvilinear path, thereby resulting in a vari-
able stiffness laminate. The structural benefits of variable stiffness
laminates are achieved by tailoring the material properties in
directions that are more favorable to carry loads within the lami-
nates. To fully exploit the advantages of a variable stiffness design,
it is often appropriate to systematically formulate the design
problem within an optimization framework. The objective func-
tions to optimize might be one or more mechanical properties,
such as buckling and in-plane stiffness. Since the fiber orientation
continuously changes within the laminate of a variable stiffness
design, the evaluation of the structural properties via finite
element simulation is often very time-consuming [1,2]. Further-
more, the optimization process might require thousands of func-
tion evaluations to locate a near optimal solution, a requirement
that makes the process computationally expensive. To alleviate
this problem, one may resort to an approximation concept, also
called a metamodel [3,4]. Significantly cheaper to evaluate, the
metamodel is substituted and used in place of a high fidelity finite

element simulation. As a result, the metamodel can significantly
reduce the time required to run the optimization.

In the literature, there are several successful applications of
metamodeling techniques in the optimization of traditional
composite laminates with straight fibers. For example, Radial Basis
Functions [5], second order polynomials [6], and Neural Networks
[7] were shown to be effective in reducing the time to find the
maximum buckling load of a composite stiffened panel. Liu et al.
[8] used a cubic response surface combined with a two-level opti-
mization technique to maximize the buckling load of a composite
wing. Lee and Lin [9,10] used trigonometric functions as the base
functions to build a metamodel for the stacking sequence optimi-
zation of a composite propeller. Integrated into a genetic algorithm
(GA), the metamodel demonstrated benefits by reducing the num-
ber of GA iterations. Kalnins et al. [11] compared the performance
of Radial Basis Functions, multivariate adaptive regression splines,
and polynomials, to optimize the post-buckling of a damaged com-
posite stiffened structure. They concluded that the methods under
investigation have cross-validation error lower than 10%; thus,
they can be efficiently integrated into an optimization framework.
In another attempt, Lanzi and Giavotto [12] compared the perfor-
mance of Radial Basis Functions, Neural Networks, and Kriging
metamodels in a multi-objective optimization problem for
maximum post-buckling load and minimum weight of a composite
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stiffened panel. The methods were found to yield similar results
and none of them was identified as being significantly superior.

While there is a considerable amount of existing research on the
use of metamodels for constant stiffness composite design, only a
few attempts look at their application in variable stiffness design.
Among those worthy to mention are the following: the optimization
of a variable stiffness laminate in vibration [13], the buckling load of a
variable stiffness composite cylinder [14], and the simultaneous
optimization of the buckling load and in-plane stiffness of a variable
stiffness laminate ignoring the presence of defects, i.e. gaps and over-
laps [2]. Recently, Arian Nik et al. [32] used the defect layer method
[15] and a Kriging metamodel to simultaneously maximize the buck-
ling load and in-plane stiffness of a variable stiffness laminate with
embedded defects. While these works demonstrate the potential of
a given metamodel in reducing the computational burden of the opti-
mization process, they are just a first attempt. No recommendation
about metamodel selection for variable stiffness composites exists.
Furthermore, metamodel performance is problem dependent and
the best metamodel is unknown at the outset [16].

This work presents a comparative study on the application of the
most widely used metamodeling methods – Polynomial Regression,
Radial Basis Functions, Kriging, and Support Vector Regression, for
the optimization of variable stiffness composite. The goal is to offer
insight into the selection of the most appropriate metamodel for the
optimization of laminated composites with varying fiber angles. We
examine three case studies: the buckling load and in-plane stiffness
of a variable stiffness composite plate under uniform compression
for two layup designs, and a variable stiffness composite cylinder
under pure bending. The advantages and disadvantages of the
metamodels are then investigated using the following criteria:

� Accuracy: the degree of closeness of a metamodel prediction to
that quantity of the true function over the design range of inter-
est. Multiple metrics, namely R-square, relative average abso-
lute error, and relative maximum absolute error are used to
assess the metamodels’ accuracy.
� Robustness: the capability of a metamodel to persistently

achieve high accuracy for dissimilar problems. In this work,
the robustness of a metamodel method is measured by evaluat-
ing its average accuracy for the entire set of test problems.
� Suitability: the degree of the effectiveness of integrating a meta-

model into an evolutionary optimization algorithm. To measure
this criterion, the performance of metamodel-assisted optimiza-
tion algorithms in the actual improvement of the solution is com-
pared via a series of numerical experiments on the case studies.

The remainder of this work is organized as follows: the data sam-
pling method and the different size of the sample data to investigate
its effect on the metamodel accuracy are explained in Section 2.
Section 3 gives a background on metamodel construction techniques
and their characteristics. The metrics to evaluate the local and global
metamodel accuracy are discussed in Section 4. Test problems for
variable stiffness composite that can be manufacturable via AFP are
then described in Section 5. Finally, the metamodels under investiga-
tion are assessed and recommendations are presented in Section 6.

2. Data sampling

Data sampling, referred to as design of experiments (DOE), is
the first step in the construction of a metamodel. The selection of
the sample points and the size of the sample have a significant
effect on the metamodel accuracy.

Sacks et al. [17] stated that sample points for simulated experi-
ments should be chosen to fill the design space rather than to
concentrate on the boundaries of the design space. The reason is that
computer experiments are deterministic and thus involve systematic

errors, whereas physical experiments involve random errors. Follow-
ing this observation, in this work a Latin Hypercube method is used to
generate training data that are space filling. In addition, to average out
the dependency of the metamodels accuracy on the sampling method,
we use five DOEs to construct each metamodel.

Besides the sampling method, the sample size also has an
influence on metamodel accuracy. To investigate the metamodel
accuracy with respect to the sample size, small and large sample
sizes are examined as suggested by Jin et al. [18]. Table 1 shows
the sample sizes and the number of confirmation data points used
to measure metamodel accuracy with respect to the sample size.

3. Metamodeling techniques

As mentioned in the introduction, there is a variety of tech-
niques that can be used to construct a metamodel. This section
gives a background on the most common methods: Polynomial
Regression (PR); Radial Basis Functions (RBF); Kriging (KRG); and
Support Vector Regression (SVR).

3.1. Polynomial Regression (PR)

A second-order polynomial can be expressed as

~yðxÞ ¼ b0 þ
Xn

i¼1

bixi þ
Xn

i¼1

biix
2
i þ

Xn

i¼1

Xn

j¼iþ1
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where b0, bi, bii and bij (i = 1,. . .,n; j = 1,. . .,n) are the regression coeffi-
cients, xi(i = 1,. . .,n) are the design variables, and ~y denotes the
approximate value for the objective function. The coefficients of the
metamodel are evaluated by fitting the model to the training data
using the least squares method [19]. The second order PR has a
smoothing capability, a feature that ensures fast convergence for
noisy functions and thus is suitable for integration in an optimization
framework. Yet, this characteristic can bring inaccuracy if there is
need to surrogate highly non-linear functions [18]. Obviously, a high-
er order polynomial can be used to construct a more accurate meta-
model; nevertheless, instabilities may arise and also a large number
of training data is required to fit such a high order polynomial [20].

3.2. Radial Basis Functions (RBF)

The RBF method uses a combination of basis functions expressed
in terms of the Euclidean distance between sample data points to
construct a metamodel [21]. The RBF model can be written as

~yðxÞ ¼
Xn

i¼1

wiwðkx� xikÞ ð2Þ

where xi (i = 1,. . .,n) are the design variables, w is the basis function
and wi (i = 1,. . .,n) are the basis function weights evaluated by fitting
the model to the training data, ||�|| denotes the Euclidean distance
between two sample data points, and ~y is the approximate value
of the objective function [4]. The basis function weights, wi, can
be calculated by enforcing the interpolation condition in Eq. (2).
This results in a linear system of equations

y ¼ ww ð3Þ

where y is the vector of function values at training data, w is the
vector of basis function weights, and w is a matrix, also known as
Gramian matrix of design variable values defined by

w ¼
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