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A B S T R A C T

To assess the risk of slope failure, this study employs a rigorous method that is referred to as the random finite
difference method (RFDM). The RFDM is capable of considering the spatial variability of soil properties subject
to different auto-correlation structures. Comparisons with the collected data are made with respect to two
idealized slopes, and a parametric analysis is presented. The results demonstrate that the spatial auto-correlation
structures significantly affect the slope failure risk. Depending on the rotated angle, the rotated anisotropy auto-
correlation structure shows a dual effect on the reliability of the slope compared to a transverse anisotropy case.

1. Introduction

Soil properties typically exhibit considerable spatial variability in
strength due to geotechnical uncertainties, even within homogeneous
soil layers. The stability of a slope can be affected or dominated by the
presence of soil variability. Numerous failure modes exist for a variable
soil slope because the slip surface tends to seek out the weakest path
(e.g., [1–3]). From an engineering perspective, slope designers consider
not only the slope stability but also the consequence of damage caused
by slope failure. To quantify the risk of slope failure, a common method
is to consider the product of the probabilities of failure and con-
sequence (e.g., [4–9]). Thus, the impact of material variability on slope
risk may be more profound because the failure consequences associated
with different slope failure modes generally differ. Slope stability was
quantified by a factor of safety in traditional deterministic methods,
which provide minimal information about the consequence of slope
failure in variable soils. Conversely, probabilistic approaches provide
an appropriate tool to address the soil variability in slope reliability
analysis and risk assessment.

At the early stage, the majority of probabilistic studies aim to de-
scribe the slope stability using the probability of failure or a reliability
index (e.g., [1,10–12]). However, these studies did not quantify the
consequence associated with a slope failure in a variable soil. In recent
years, few studies focused on the risk response of a soil slope using
several probabilistic analysis methods. According to the differences
among the assumptions and algorithms, probabilistic analysis methods
can be divided into two categories: analytical methods and numerical
methods. In the context of analytical methods, Huang et al. [7]

evaluated the consequence of slope failure for multiple failure modes
using a limit analysis method, which combines lower and upper bound
theorems with random fields generated by the Karhunen-Loeve ex-
pansion method. Jiang et al. [13,14] developed an efficient analytical
approach for risk assessment by limit equilibrium analysis. Scholars
such as Zhang and Huang [15] and Li and Chu [16] have explored the
risk of slope failure using the proposed representative slip surfaces
method. In predicting the probability of slope failure and risk, analy-
tical methods are generally effective but have limitations. These
methods usually require the location and shape of potential slip sur-
faces, which limit their application for slope risk assessment associated
with multiple potential failure mechanisms. As noted by Jiang et al.
[13], their method is suitable for the risk analysis of a slope with a
circular slip surface. A study of the risk of rainfall-induced slope failure
was conducted considering the effects of spatially variable hydraulic
conductivity [17].

Alternatively, a rigorous numerical based method that is referred to
as the “random finite element method (RFEM)” provides a rational
approach for the probabilistic analysis of slope stability (e.g., [1]).
Hicks et al. [18] analyzed the influence of the soil variability on the
probability of failure and the slip mass of a three-dimensional slope by
the RFEM. Li et al. [19,20] introduced the subset simulation to the
RFEM, which provides an effective method for calculating the slope risk
at small probability levels. Subsequently, Xiao et al. [21,22] proposed
an improved method—the auxiliary random finite element method
(ARFEM)—to study the influence of the horizontal variability of soil
properties on the risk of three-dimensional slope failure. Using the
RFEM, Liu et al. [23] investigated the effect of the stratigraphic
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boundary uncertainty on the risk of a layered slope in variable soils.
These studies have demonstrated how the spatial variability of soil
strength significantly affects the slope failure risk.

In these probabilistic analysis methods, random fields are com-
monly employed to describe the spatial variability of soil properties.
However, determining the values of the statistical parameters (i.e.,
auto-correlation function, auto-correlation distance, or scale of fluc-
tuation) that describe the auto-correlation structure of the spatial
variability is difficult due to the limited field observations. Therefore,
theoretical auto-correlation functions and experimental auto-correla-
tion distances are often employed in the reliability analysis of a slope. Li
et al. [24] explored the influence of five theoretical auto-correlation
functions on the slope reliability and determined that the slope relia-
bility is not sensitive to the type of auto-correlation function. Con-
versely, numerous results demonstrate that the influence of the auto-
correlation distance on the slope reliability and risk of failure is sig-
nificant [13,18,19,26].

In general, two patterns of auto-correlation structures—isotropic
and anisotropic—are assumed. Their anisotropy indicates that the auto-
correlation distances in all horizontal directions are equivalent and the
largest distances, whereas the auto-correlation distances in the vertical
direction are the smallest distances. This situation was termed trans-
verse anisotropy by Zhu and Zhang [27]. Due to various depositional
processes, Zhu and Zhang [27] divided the soil spatial variability into
six patterns: isotropy, transverse anisotropy, rotated anisotropy, general
anisotropy, general rotated anisotropy, and a combination of two ani-
sotropy patterns. However, few studies have discussed other patterns in
the reliability analysis of slope, particularly for risk assessment of slope
failure.

To address this problem, risk assessment of slope failure has been
analyzed when soil parameters are subjected to different auto-correla-
tion structures. An effective probabilistic method, which is referred to
as the random finite difference method (RFDM), is employed in this
paper; it combines random fields with the finite difference code FLAC3D

[3]. Chenari and Alaie [28] employed the RFDM to study the prob-
ability of failure of undrained slopes. The RFDM is extended to assess
the risk of slope failure in this paper. In the RFDM, random fields of soil
shear strength are generated for different auto-correlation structures via
the matrix decomposition method. Next, the factor of safety is calcu-
lated by the finite difference code FLAC3D, and the critical slip surface
and the corresponding slip mass are determined by a self-compiling
program. The probabilities of failure and risk assessment are finally
obtained using Monte Carlo simulation (MCS). Additionally, two slopes
are introduced to check the validity of the RFDM for the risk assessment
of slope failure and to explore the influence of four typical auto-cor-
relation structures (i.e., isotropy, transverse anisotropy, rotated aniso-
tropy and combination anisotropy).

2. Random finite difference method (RFDM)

2.1. Generation of random fields

Random fields adequately describe spatial variability. In a random
field, an important measure of the variability is the auto-correlation
distance. The auto-correlation distance may not be constant for dif-
ferent directions in a soil mass, which produces various auto-correlation
structures. Typical soil profiles, as shown in Fig. 1, correspond to the six
previously mentioned patterns. Note that two lines with arrows are
used to indicate the auto-correlation between two principal directions
in each profile, and the length indicates the degree of auto-correlation.
In the profiles, the long line represents the strongest auto-correlation,
and the short line represents the weakest auto-correlation.

In Fig. 1a, the lengths in the two principal directions and the lengths
in the other directions are identical, i.e., an isotropic structure. In
Fig. 1b, the two principal directions are orthogonal and parallel to the
Cartesian coordinate axes. This structure is defined as transverse

anisotropy. The strongest auto-correlation is exhibited in the horizontal
direction, whereas the auto-correlation in the vertical direction is the
weakest direction. In Fig. 1c, the two principal directions are rotated by
the angle β on the pattern of transverse anisotropy caused by geologic
or man-made processes; this structure is defined as rotated anisotropy.
In Fig. 1d, the two principal directions are not orthogonal but form the
angle η, and one of the two principal directions remains parallel to an
axis. Fig. 1e shows a rotated case of general anisotropy. Fig. 1f displays
a combination case that involves two auto-correlation structures in a
soil profile.

As stated by Zhu and Zhang [27], the existence of the joints is an
important factor that causes general anisotropy and general rotated
anisotropy structures. This phenomenon is more common in rock and is
less likely to appear in soil. Therefore, this paper focuses on the influ-
ence of the other four auto-correlation structures on the risk of slope
failure because soil slopes are considered. Note that a multilayered soil
slope is selected to simulate the combination case, in which the prop-
erties in different soil layers are characterized by transverse anisotropy
or rotated anisotropy with different rotated angles.

Prior to the generation of random fields for different auto-correla-
tion structures, their expressions must be established. Currently, the
exponential auto-correlation function is commonly employed to de-
scribe the auto-correlation structure (e.g., [19,20,24,27,29,30]). Two
expressions are employed to describe the exponential auto-correlation
structure for two-dimensional conditions: single exponential auto-cor-
relation functions and squared exponential auto-correlation functions.
Considering the analyzed structures (i.e., isotropy, transverse aniso-
tropy and rotated anisotropy) as an example, the expressions of the two
exponential auto-correlation functions ρ(τx, τz) and auto-correlation
distance θϕ (ϕ is the directional angle) are given as

Single exponential auto-correlation function (e.g., [19,20,24,29]):
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Rotated anisotropy:
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Squared exponential auto-correlation function (e.g., [27,30]):
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Transverse anisotropy:
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