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A B S T R A C T

A new conditional modeling along with a level-set method that can produce high quality and large packs of
irregular particles is proposed. First, an initial pack of particles is generated statistically using the particles
provided through an X-ray image. Then, the mismatch locations, wherein an error map identifies the particles
manifest unrealistic shapes, are detected. Next, a level-set algorithm is applied to refine the defected particles
using the statistical distributions extracted from the actual particles. The generated packs are statistically and
physically (i.e. flow modeling) compared with the original particles and they all represent an excellent agree-
ment.

1. Introduction

Packing of particles is a long-standing problem in various theore-
tical and experimental studies. One can observe such packings in every
places as it has been linked to a wide range of applications such as
ceramic materials [1], glasses [2], granular media [3–5], liquids [6,7],
living cells [8], solids [9], suspensions [10,11], pharmaceutical in-
dustry [12], soil science [13] and so forth. The packing of uniform
spheres has been studied widely in both states of random loose- and
-dense packing. In the recent years, however, due to a momentous in-
crease in computation power, modeling of more complex and, at the
same time, realistic particles have become prevalent [14–19].

Boolean-based modeling is one of the popular methods that has
been used to generate different particles’ packs. In these techniques, the
statistical properties summarizing the spatial morphology are provided
based on which individual particles are generated and packed. Due to
using a set of well-defined objects, the computational time of such
methods is very low, and, because of the same reason, such modeling is
limited to some distinct shapes. For example, circles/spheres [20–25] or
cylinders [26] are two of such common particles. More complex shapes
such as ellipsoids [27], polyhedrons [19,24,28–31], polyarcs [32],
pentagons [33], rounded rectangles [34] have also been used. De-
scribing the complexity and sharpness of particles, however, through
these shapes cannot be achieved.

The results of particles’ packing can be used in a variety of com-
putational methods. To name a few, thermal conductivity, deformation,
the interaction between particles, geomechanical analysis (e.g. stiffness,
shear-induced dilatancy, shear strength, …) and flow simulation are
controlled by the morphology of grains [35–38]. Such techniques
cannot provide an accurate evaluation if the morphology is not

represented realistically [39–42]. Furthermore, some particles may not
be definable in any of the above-mentioned shapes. Thus, accurate re-
presentation of particles’ complexity and shape is crucial [35,36,43,44].

The morphology of discrete particles used to be inferred from 2D
scanning electron microscopic (SEM) studies [45]. Providing such
images is often easy and they come with a low cost. However, ex-
tracting the necessary spatial information (i.e. 3D) out of these images
may not be trustful. The recent advances in X-ray computed tomo-
graphy have provided this opportunity to visualize the grains in 3D
such that the spatial complexity and morphology can be extracted
realistically [46–48]. For taking advantage of such images, several
methods have been proposed to date that can extract the necessary
information to be used within the computational techniques (e.g. dis-
crete element method) [35,49–53]. It should be noted that using such
complex particles within the computational contexts call for developing
new and fast methods [34,54–57]. For example, Mollon and Zhao
[58,59] have combined the theory of random fields along with a
Fourier-shape-descript for generating a more realistic pack of the par-
ticle to be used within the computational frameworks. Performing all
such characterizations requires the availability of 3D images and,
consequently, utilizing them in the numerical simulations.

Providing several (e.g.> 10) large 3D images (e.g.
10× 10×20mm3) of irregular particles may not be feasible in every
project. Accurate and reliable evaluation in such complex media, ba-
sically, entails numerous large images to cover all the possibilities of
grains’ morphologies. Relying on one small and non-representative 3D
image can lead to wrong predictions for catastrophic events, such as
landslides, tilting, and settlement of buildings, and failure of dams,
bridges and retaining walls. Thus, providing large and, at the same
time, accurate models of particles is critical, as they can provide a
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deeper insight and a fundamental understanding of irregular and
complex particles. Aside from the existing limitations on the size of 3D
images, acquiring such large data is difficult and too expensive.

In this paper, a new attempt has been made to use the current small
3D images I and build several large models of discrete and irregular
particles. For instance, a small image containing 670 particles is used
and 50 new packs, each with 3000 particles, are generated. Unlike the
previous methods, the particles are not summarized using inaccurate
statistical descriptors, but they are used directly, and, if necessary, re-
fined accordingly. To this end, a new probability-based method, within
the framework of conditional sampling, is proposed by which the par-
ticles in 2D/3D images are used without any buffer descriptors.

First, an initial and large model containing new particles is gener-
ated. Such particles are not exactly the same ones manifested in the
original image but are very similar to the given image. Then, the un-
realistic particles, through a mismatch map that is generated from the
previous step, are identified. A spherical mesh is generated on each of
these particles and is corrected using the morphological information
extracted from the input image. The correction is carried out using a
Laplacian method. The process of correction is continued until the
visiting particle matches the extracted spatial distributions.

Aside from the above new features, one of the other differences of
the proposed method in this paper is that the particles are modeled
together. In other words, some spatial configurations only occur under
specific circumstances and are meaningful when the particles are
looked together. Thus, the arrangement, and even the shape, of parti-
cles is relevant when are they regenerated with respect to the given
settings. For example, most, if not all, of the previous methods model
the particles separately. Then, the particles, based on some rules, are
packed, which results in ignoring the initial configuration. The pro-
posed method can reproduce the actual intricacy and interlocking of a
real sample, and it is also able to fill an arbitrary container with an
already dense granular sample.

This paper is arranged as follow: First, the developed method is
discussed wherein several features of the proposed algorithm, including
grain generation and corrections. Then, the 3D generated models are
compared under rigorous statistical tests. Finally, the accuracy of the
generated models are compared using flow simulation.

2. Methodology

In this section, the main algorithm cast on a conditional modeling is
first introduced. Then, the extracted morphological information, which
is required for grain’s correction, is described. Finally, the way that the
particles are repaired is discussed.

2.1. Computational modeling

The utilized algorithm in this paper is based on a conditional
probability inferred from a Markovian property [60–63]. Mathemati-
cally speaking, the term Markovian refers to a memoryless property in
probability in which the conditional probability of future states only
depend on the present state and it does not subject to a sequence of
events in past. This concept is used in this paper as the probability of
having a void or solid (i.e. grain) phase only depends on the sur-
rounding cells, not the entire simulation space or particles. Further-
more, since the modeling of granular media is considered as a discrete
modeling, using the Markovian assumption can alleviate the compu-
tational burden of conditional probability. In other words, using the
traditional concepts in calculating the conditional probability requires
considering all the current and past states for estimating the probability
of an event in future, which is computationally expensive.

The modeling occurs on a Cartesian grid G with N cells, either in 2D
or 3D, and they can be identified with index i. The simulation grid can
be of any shape, such as the container of the sample or regular cube/
rectangular. An example of such a simulation grid is shown in Fig. 1.

Since the investigated problem in this paper is in the form of discrete
variables, thus, a discrete variable z {0,1}i is assigned to each cell, which
in this case is the phases exist in the initial given image I, namely the
solid (i.e. particle) or void space. In other words, the final result of the
simulation is in the form of 0 and 1, referring to the void and solid
spaces, respectively. The input image I can be obtained using the to-
mography methods, which initially is available as 2D/3D grayscale
image. The grayscale image requires segmentation to represent the
particle as discrete elements. In this study, such a binary image I is used
as the input data. Thus, the modeling grid can be expressed as

= …z z zz { , , , }i1 2 , where zi indicates the value that is taken by cell N .
Then, the joint probability can be written as:
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Due to making a Markovian assumption, the conditional probability
for zi depends on small subset, that is the sequential neighborhood of
cell i, or = …{Ψ}i i N1,2, , . As mentioned, such a neighborhood is composed of
the cells around the vising point, which belong to either the void or
solid space. Thus, Eq. (1) can be rewritten as:
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where zΨi represents the cells located in Ψi. Therefore, the joint prob-
ability can be written as:
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As a result, the above conditional probability requires considering a
small subset of = …{Ψ}i i N1,2, , .

Computing the equation requires a considerable amount of time if a
large neighborhood is used. One, however, can replace such a prob-
ability with a distance function presenting the difference between the
already simulated points and I as follow:
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where Ox indicates the overlap of the new location with the previous
cells in x direction, which refers to the Markovian assumption used in
this paper. Given the previously simulated cells, Eq. (4) gives the best
matching location in I. For the sake of simplicity, the equations are
written in 2D and similar expression can be used in 3D.

Thus far, the main elements of the utilized algorithm have been
discussed: (i) the simulation grid G, (ii) similarity function, which is
used instead of the original conditional probability to expedite the
computations, and (iii) overlap region. Therefore, the described com-
putational procedure commences from a corner on the defined simu-
lation grid. Then, the overlap cells, which can contain either void or
solid, are extracted and their similarity with the particles in I is com-
puted using Eq. (4). Based on the produce similarity map over I, a set of
candidates is selected and one of them is inserted in the visiting cell.
Clearly, the candidates are selected among those that have the highest
similarity with the previous pixels, which can be composed of both void
and solid phases. The content of the selected candidates depends on the
cell values on the overlap regions and the arrangement of particles in
the initial pack I. Thus, it should be noted that the particles are not
simulated individually, but they are considered together as a pattern.
Some of the candidate patterns that are selected from a 2D image are
shown in Fig. 2. As can be seen, the patterns can contain either a
complete void space, a single grain or only a part of the grain. If the
latter is selected (based on its similarity with the previous ones in G),
then, the next candidate is selected in such a way that it completes the
already existing partial grain. As will be discussed, some artifacts can
occur if a candidate for completing the imperfect grain is not found. In
this manner, new particles are created while the original morphology is
preserved within the same distribution. The above process continues
until the cells are all simulated. Ultimately, an ensemble of particles is
generated on the initial simulation grid G.
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